Complex Concurrency
Patterns 1n Go

Evan Huus - Shoplfy Inc.
@eapache

Input

Goroutine

Goroutine

Goroutine

N d LNV

Goroutine

N\

Goroutine

N

Goroutine

N

Goroutine

N

Goroutine

In Theory

N

Output

W
Q
&

Q

S
R
S

Yes, Go makes concurrency easier.

Yes, Go makes concurrency easier.

It’s still really hard.

Overview

e A little bit of context
e A lot of case study

Literary Giants

Kafka (https://katka.apache.org/)

e Java-based Apache project for distributed
publish-subscribe messaging.

e Messages are grouped into topics, topics are
subdivided into partitions, and partitions are
led or replicated by brokers.

e C(Clients are thick.

https://kafka.apache.org/

S arallld. gO (https://github.com/Shopify/sarama)

e Native Golang client for producing and
consuming messages via Kafka.

e Implements wire protocol, producer and
consumer.

e First version was a proof-of-concept, kept it
simple, but...

https://github.com/Shopify/sarama

Knuth

“We should forget about small efficiencies, say
about 97% of the time: premature optimization
1s the root of all evil. Yet we should not
pass up our opportunities in that
critical 3%.”

Second Draft Requirements

Fast
Configurable
Resilient
Correct

Producer

,«[topic producer

7
7

@

[dispatcher]%

topic producer

!

-,
-,
-,
-,
-,
-
/’
-

partition
produ<_:er

partition |
producer |

-—

aggregator

!

—

aggregator

v

broker producer broker producer

\ /

\/

retrier

Resiliency and Isolation

[dispatcher]

— v

- ,—[topic producer]

partition
producer

).

|

partition)

topic producer

)

producer |

Resiliency and Isolation
- fan-out (dispatcher)

handlers := make (map[string]chan<- *Message)
for msg := range input {
handler := handlers[msg.Topic]

if handler == nil {
handler = p.newTopicProducer (msg.Topic)
handlers[msg.Topic] = handler

}

handler <- msg

Resiliency and Isolation

- circuit-breakers (https://github.com/eapache/go-resiliency)

partitions, err = client.Partitions (msg.Topic)
versus
breaker := breaker.New(3, 1, 1l0*time.Second)

var partitions []int32

err := breaker.Run(func() (err error) {
partitions, err = client.Partitions (msg.Topic)
return

})

https://github.com/eapache/go-resiliency

Dynamic Multiplexing

Partition
->

Broker

Dynamic Multiplexing

- global, locked, reference-counted map

Partition
->

Broker

Dynamic Multiplexing

- acquire-broker

p.brokerLock.Lock ()
defer p.brokerLock.Unlock ()

bp := p.brokers[broker]
if bp == nil {
bp = p.newBP (broker)
p.brokers[broker] = bp

}
p.brokers [broker] .refs++

return bp

- release-broker

p.brokerLock.Lock ()
defer p.brokerLock.Unlock ()

p.refs[bp]--
if p.refs[bp] == 0 {
close (bp.input)
delete (p.brokers, bp.broker)

Batching and I/0

L]

aggregator

v

broker producer

1
|
|
1
1
|
|
1
1
.

Batching and I/0

- aggregator

for {
select {
case msg := <-input.:
req.addMessage (msqg)
if req.full() { output = realOutput }
case <-timer:
output = realOutput
case output <- req:
output = nil
req = new (Request)

Batching and I/0

- buffer-producer

for request := range input {
response, err := broker.Produce (request)

switch err. (type) {

//
}

p.handleResponse (response)

Try, Try Again

partition
producer

).

partition
producer

broker producer

L1] T

[broker producer]

[dispatcher]¢

broker producer

[broker producer]

Try, Try Again (option #1)

for {
select {
case msg := <-input:
buf = append (buf, msqg)
case ack := <-acks: partition partition
// producer | ° | producer
}
for partition := range response {

if partition.success {
partition.sendAck ()
} else { broker producer | - [broker producer]
partition. sendNack ()

}

Try, Try Again (option #2)

if msg.retries > 0 {

[dispatcher]¢

//
}
for partition := range response {
if !partition.success {
for msg := range partition

msg.retries++

{

dispatcher <- msg

broker producer

[broker producer]

Try, Try Again (continued)

Try, Try Again (continued)

A

=

select {
case msg := <-input:
/...
case output <- msg:
/] ...

Try, Try Again (continued)

i Caitie McCaffrey x
caitie

2 Unbounded Queues, come on what is this
amateur hour.

= s u OE-LAEHERE
8 34 ¢ a3 y it &S

1:28 PM - 8 Jul 2015

Try, Try Again (continued)

- 1fit’s stupid, but it work (https://github.com/eapache/channels/)
for {

if len(buf) == 0 { .
msg = <-p.retries [dispatcher]¢
} else {
select {

case msg = <-p.retries:
case p.input <- buf[0]:
buf = buf[l:]

continue
} broker producer | ... | broker producer

} \/
buf =

= append (buf, msqg) etrior

https://github.com/eapache/channels/

Putting it all together

dispatcher]%

,«[topic producer]

7
7
7

partition
produ<_:er

7
-
-

partition
producer |

\

topic producer

!

aggregator

!

il

aggregator

v

broker producer

\

broker producer

/

\/

retrier

Consumer

= o~
response response
feeder T feeder
v v v
[dispatcher] [dispatcher }“
\ /
_~ ——a
subscription subscription
manager l manager
f broker broker _
| consumer consumer

Structure Your Goroutines

Anonymous -> Named -> Structured

Structure Your Goroutines

Anonymous Named
go func() { func foo () {
// ... /] ...

}() }

go foo()

Structure Your Goroutines

Structured
type foo struct { func newFoo(...) {
// ... foo := &foof
} /] ...
}
func (f *foo) run() { go foo.run()

/... }

Ownership Semantics

v v v

[dispatcher] [dispatcher]

<

Ownership Semantics

- dispatcher
trigger := make(chan struct{}, 1)
for = range trigger {
broker, err := findNewLeader ()
if err '= nil {

time.Sleep(...)
trigger <- struct{}{}
} else {
broker.subscribe <- partition

}

Ownership Semantics
- broker

for partition, messages, err := range response {
if err !'= nil {
delete (subscriptions, partition)
partition. trigger <- struct{}({}
continue

}

sendToUser (messages)

Isolating I/0O (redux)

|

subscription
manager

v

broker
consumer

Feeding the User

response
feeder

f

).

[

response
feeder

f

broker
consumer

) .

[

broker
consumer

Feeding the User (response-feeder)

for messages := range input {
for msg := range messages {
select {

case output <- msg:

case <-time.After (timeout) :
delete (broker.subscriptions, partition)
broker.acks.Done ()
// feed remaining messages
broker.subscribe <- partition
continue outerLoop

}

}

broker.acks.Done ()

Feeding the User (broker-consumer)

broker.acks.Add(len (subscriptions))

for sub := range subscriptions {
sub. feeder <- response.messages[sub]

}

broker.acks.Wait ()

Consumer

= o~
response response
feeder T feeder
v v v
[dispatcher] [dispatcher }“
\ /
_~ ——a
subscription subscription
manager l manager
f broker broker _
| consumer consumer

[Lessons Learned

G PN

Channels are primitives.

Structure your goroutines.

Don’t trust the network or the user.
Infinite buffers smell.

Don’t be afraid of locks and “anti-go” tricks.

Credits

e Photo of Franz Kafka: public domain (via Wikimedia
Commons).

e Photo of José Saramago: CC-BY 2.0 (from the website of
the Presidencia de la Nacion Argentina, via Wikimedia
Commons)

e Photo of Donald Knuth: CC-BY-SA 2.5 (by Jacob
Appelbaum, via Wikimedia Commons)

e Tweet from @caitie: used with permission.

https://twitter.com/caitie

Questions?

@eapache
eapache@gmail.com
https://eapache.github.io

(feedback: https://joind.in/talk/view/14954)

https://twitter.com/eapache
https://twitter.com/eapache
mailto:eapache@gmail.com
mailto:eapache@gmail.com
https://eapache.github.io
https://eapache.github.io
https://joind.in/talk/view/14954

@eapache
eapache@gmail.com

https://eapache.github.io
(feedback: https://joind.in/talk/view/14954)

https://twitter.com/eapache
https://twitter.com/eapache
mailto:eapache@gmail.com
mailto:eapache@gmail.com
https://eapache.github.io
https://eapache.github.io
https://joind.in/talk/view/14954

