
Carleton University Honours Project

Knowledge in Rendezvous of Agents with

Different Speeds

Evan Huus

eapache@gmail.com

Supervised by Professor E. Kranakis,

Department of Computer Science

April 16, 2014

mailto:eapache@gmail.com

Abstract

Achieving rendezvous is a common distributed computing problem which can be

roughly stated as follows: given k agents in some space, have them move so that

they meet (“achieve rendezvous”) in the minimal amount of time. This process

frequently involves breaking symmetry between the agents; one method of doing

this was proposed by Feinerman et al. [2012] and was based on differences in

agent speeds. While their paper focused exclusively on the case of two agents,

they note in their conclusion that this technique has much broader applications.

In 2013, this author surveyed other applications of the technique of Fein-

erman et al. as part of an undergraduate course project [Huus, 2013]. The

problem was extended to more than two agents in several different ways, and

an algorithm was sketched to achieve rendezvous in some of those models. In

this paper, we will formally present an improved variant of that algorithm, give

some bounds on the theoretic optimal algorithm, and consider several other

versions of the problem when the agents have differing capabilities and levels of

knowledge.

Acknowledgements

I would like to thank my supervisor, professor Evangelos Kranakis, for his help,

support and advice throughout this project.

1

Contents

1 Introduction 3

1.1 The Rendezvous Problem . 3

1.2 Breaking Symmetry . 4

1.3 Agent Speed Differences . 4

1.4 Our Models . 5

1.5 Our Results . 7

2 The Herding Algorithm 9

2.1 Presentation of the Algorithm . 9

2.2 Proof of Correctness . 12

2.3 Time Analysis . 14

2.4 Optimality . 15

3 Stronger Models 20

3.1 Knowledge of n . 20

3.2 Knowledge of k . 21

3.3 Knowledge of c . 24

3.4 Using Pedometers . 24

3.5 Pedometers and Knowledge . 24

4 Conclusion 27

2

Chapter 1

Introduction

1.1 The Rendezvous Problem

The rendezvous problem is an extremely common one in both distributed com-

puting and robotics, and while certain variations on it have been quite well

studied (a paper by Alpern [2002] provides a good summary of what had al-

ready been accomplished over a decade ago), others are relatively new. In its

broadest form, the rendezvous problem can be stated as follows: given k agents

in some space, have them move so that they meet in the minimal amount of

time. This event is usually known as “achieving rendezvous”.

There are of course many versions of this problem, depending on several

parameters. The space may be continuous as studied by Czyzowicz et al. [2010],

or it may be discrete as studied by Yu and Yung [1996]. It may be a specific

shape, such as the ring studied by Kranakis et al. [2010], or it may be a general

graph as studied by Dieudonné et al. [2013].

The number of agents and their capabilities also have a substantial effect.

Hegarty et al. [2013] explored the scenario where agents can exchange arbi-

trary information with any agents in their “line of sight”, while Sawchuk [2004]

considered a much weaker model where the agents were restricted to dropping

indistinguishable tokens to mark their current location.

Of particular interest are cases where the agents must all run the same algo-

rithm, which is generally known as the symmetric rendezvous problem [Alpern,

2002]. If the agents can run different algorithms (the asymmetric rendezvous

problem) then the problem is typically much easier, though not always trivial.

3

1.2 Breaking Symmetry

In many of these variants, rendezvous cannot be achieved without finding some

way of breaking the symmetry of the system. For example, in the simple case

of two deterministic agents on a ring graph, rendezvous cannot be achieved if

the agents are perfectly symmetric; they will always remain exactly the same

distance apart. Even in cases where rendezvous can be achieved without it,

breaking symmetry often leads to much more efficient algorithms than would

otherwise be possible.

The most frequent method for breaking symmetry is to use random bits

to make probabilistic choices. Such algorithms provide an expected time to

rendezvous, but typically poor worst-case behaviour. There are also many real-

world scenarios where no good source of random bits is available; in these cases,

various tricks must be used in order to exploit other sources of asymmetry.

One such trick is to let the agents drop tokens and count inter-token distances.

This method successfully achieves rendezvous as long as the agents do not start

equidistant on the ring [Sawchuk, 2004].

Breaking symmetry has applications to other distributed computing prob-

lems as well. For example, Schneider and Wattenhofer [2010] developed a new

symmetry-breaking technique which gives an exponential speed-up in certain

distributed graph colouring problems. The heavily-studied leader election prob-

lem is also fundamentally one of breaking symmetry; in order for multiple agents

to agree on a single leader, there are many cases where their decisions cannot

be symmetric.

1.3 Agent Speed Differences

One source of asymmetry that has recently been receiving more attention is the

difference in speed between two otherwise identical agents. While agent speeds

have been considered as a problem parameter before, the traditional assumption

has been that all agents move at a common fixed speed. Even when agent speed

has been allowed to vary, as in the paper by Czyzowicz et al. [2010], agents

have typically had a uniform range of possible speeds and have been required to

choose their speed deterministically, maintaining the symmetry of the problem.

Recently, Feinerman et al. showed that speed differences can sometimes ac-

tually be useful. In their paper, they consider the case of two agents placed on

4

a ring. The agents are identical in every aspect except their speed, and use this

asymmetry to achieve guaranteed rendezvous with good time bounds [Feiner-

man et al., 2012]. While they focused exclusively on this simple case, Feinerman

et al. note in their conclusion that this technique has much broader potential

applications, both in rendezvous and in other symmetry-breaking problems.

Following that publication, this author surveyed several other applications

of their technique as part of an undergraduate course project on distributed

computing. In that project, torus and tree-shaped graphs were explored, as

was a variant where the agents have a common speed, but different sections of

the ring have varying levels of “friction”. Applications to the leader election

problem were also touched on [Huus, 2013].

The most interesting direction explored in that project was, however, extend-

ing it to more than two agents. Several ways of generalizing the model were

discussed, and an algorithm was sketched to achieve rendezvous in the more

powerful of those models. In this paper, we will formally present an improved

version of that algorithm, give a bound on the optimal algorithm, and consider

several variants of the problem when the agents have differing capabilities and

levels of knowledge.

1.4 Our Models

Throughout this paper we will consider rendezvous across several different vari-

ants of a single core model, similar but not identical to the one used by Fein-

erman et al. [2012]. In our core model, we have k ≥ 2 mobile agents placed

on a continuous ring of length n. We denote the agents A1 through Ak for

convenience, but emphasize that both the agents and the ring are anonymous.

The agents are fully identical except possibly for their speeds.

Each agent Ai has its own maximum speed, denoted si. In Feinerman et

al. agents could be either stopped or travelling at si; we relax this requirement

slightly to allow agents to travel at any speed in the interval [0, si]. Without loss

of generality, we normalize min(s1, . . . , sk) = 1 and denote max(s1, . . . , sk) = c,

the ratio between the speeds of the fastest and slowest agents.

Agents can travel in either direction on the ring, and can turn without cost.

However, the ring is not oriented. Agents can detect when they encounter an-

other agent, as well as whether that agent is travelling in the same or opposite

5

direction. Co-located agents may exchange arbitrary (though typically small)

amounts of information. We wish to explicitly note that this is a determinis-

tic model, and as such agents must have a reason to turn or change speeds,

whether that reason is an encounter with another agent, a certain number of

steps elapsed, or some other event.

When discussing running-time and optimal bounds, we take an adversarial

model where the adversary can choose the initial position and orientation of

each agent. The adversary may also choose the maximum speed of each agent,

within the restrictions of the speed distributions discussed below.

The above conditions define the portions of our model that remain constant

throughout the paper. We generate variants from this base across two dimen-

sions: agent knowledge, and the distribution of agent speeds. In the weakest

case of agent knowledge, the agents know nothing except their own speed si,

and they do not have pedometers or timers. In stronger cases they may know

the values of n, k, or c; they may also have pedometers or timers.

The distribution of agent speeds is a more interesting source of differences.

We consider the following four possible distributions, sorted in increasing order

of apparent power:

Not-All-Identical This model is the weakest possible interesting model. Its

only restriction on the adversary’s choice of speeds is that there is some

pair of agents, Ai and Aj such that si 6= sj . No agent is guaranteed to

have a unique speed.

One-Unique In this slightly stronger model, the adversary is required to give

at least one agent a unique speed, though that speed is not required to be

maximal or minimal among the agents.

Max-Unique In this model, the adversary is required to give at least one agent

a unique speed, and that speed is required to be maximal (or, symmetri-

cally, minimal) among the agents.

All-Unique In this strongest model, the adversary is required to give each

agent a unique speed. Note that since agents are aware of their own

speeds, this effectively provides each agent with a unique label, which

simplifies a number of problems [Flocchini et al., 2004].

6

The last component of our model which we want to touch on is the very

concept of rendezvous. The obvious, simple definition is that rendezvous occurs

when all k agents meet at the same location, but for certain real-world problems

this is not quite enough. For example, if some quorum of agents is necessary

to execute an algorithm, actually achieving rendezvous is not sufficient if the

agents are not aware of that fact. Specifically, if k is not known to the agents

then they may not realize that they have achieved rendezvous even when all k

agents are present.

Dieudonné et al. [2013] address a more general version of this problem. In

their model, all agents have a unique label, and the problem is solved when all

agents know all k labels and are aware of that fact. They call this problem

Strong Global Learning. Following this terminology, we define the concept of

strong rendezvous for k agents as the situation where all k agents meet at the

same location, and are aware of that fact. Note that in the event of strong

rendezvous, all agents are therefore trivially able to calculate k by counting the

agents present.

1.5 Our Results

The remainder of this paper is divided into three chapters. In chapter 2 we

present the “herding algorithm” for rendezvous of k ≥ 2 agents in the Max-Unique

and All-Unique models with no additional knowledge. We prove that it achieves

rendezvous in time at most 1
2

(
c+1
c−1

)
n, and that this rendezvous is strong in the

All-Unique model. We also prove that, asymptotically in k, no algorithm can

do better than time 2
c+3

(
c+1
c−1

)
n in either model.

In chapter 3 we consider variants of the problem with more agent knowledge.

We show that knowledge of n is insufficient on its own to make a difference;

the algorithm from chapter 2 does not receive any benefits. We also show

that knowledge of k is somewhat more interesting; while it does not materially

affect the existing algorithm, it does permit the construction of a variant that

is capable of achieving rendezvous even in the weaker One-Unique model. This

variant is presented and a proof of correctness is given, but the running-time is

not analyzed.

The cases where the agents have pedometers or know the value of c are

also discussed. As with knowledge of n, these additions are insufficient on their

7

own to provide any obvious advantage. However, we show that both of these

elements can be used by the agent to gain useful knowledge, and we conjecture

that this knowledge may lead to improved algorithms for certain special cases.

Finally, we consider the combined case where the agents have a pedometer and

know both c and n. We use this knowledge to construct a variant of the herding

algorithm which takes n/(c2 − 1) less time than the original.

Finally, we present our conclusion in chapter 4 and consider possible areas

for future work.

8

Chapter 2

The Herding Algorithm

In this chapter we present the basic herding algorithm, which achieves ren-

dezvous in the Max-Unique model and strong rendezvous in the All-Unique

model while requiring no additional agent knowledge. As this chapter deals

strictly with those two stronger models, we introduce one extra notational con-

venience: we define Amax to be the agent with the unique maximal speed.

We prove the correctness of the presented algorithm, analyze its running-

time, and prove a lower bound on the running-time of the optimal algorithm.

While our algorithm was developed independently, it turns out that it shares

some similarities with a randomized algorithm proposed by Steve Alpern in

section 7.4.1 of his paper [Alpern, 2002]. That algorithm belongs in the same

family as the one presented here, but to the best of our knowledge was never

published in full. Due to its use of random bits, it provides only a probabilistic

running-time, as opposed to the guaranteed running-time of our algorithm.

2.1 Presentation of the Algorithm

Intuitively the herding algorithm is quite simple. Agents begin to move until

they encounter another agent. When that occurs, the two agents attempt to

circumnavigate the ring in opposite directions, in order to “herd” all the other

agents to rendezvous. When two herding agents meet, the agent with the faster

remembered speed dominates, meaning that eventually Amax and some partner

will herd all other agents to a single rendezvous point.

9

Formally, the algorithm requires each agent to maintain in memory a simple

state machine consisting of four states. We denote the current state of Ai as σi.

The algorithm also requires each agent to remember a single agent speed (not

necessarily its own), which we denote mi.

So far we have said nothing bounding the size of agent speeds; since c rep-

resents the largest ratio, not the largest absolute speed, the intuitive dlog ce
has no actual relation to the amount of memory agents require to store mi.

However, the algorithm only needs enough precision to do comparisons on the

speeds. Therefore we can take dlog ke as a bound, since there cannot be more

than k distinct speeds in any model. As the state machine requires only a con-

stant number of bits to store one of the five states, this gives us a total memory

requirement of O(log k) bits per agent.

Since there are only four states, we provide an intuitive name and description

for each one:

Searching Agents begin in this state, and while in it they simply move in their

current direction at their maximum speed until they encounter another

agent. At this point they transition to some other state and continue the

algorithm. Once an agent has left this state, it never re-enters it.

Herding Agents enter this state when they have reason to believe that they are

the fastest agent, Amax. This occurs when they have encountered at least

one other agent, and all agents encountered so far have been slower than

themselves. While in this state, agents attempt to herd all other agents to

rendezvous by circumnavigating the ring. They travel at their maximum

speed or, if other agents are travelling with them, the maximum speed

achievable by the group.

Herded Agents enter this state when they become aware of an agent faster than

themselves, and therefore know that they are not the fastest agent. While

in this state, agents are moving towards rendezvous with the fastest agent

they are currently aware of. As in Herding they travel at their maximum

speed or, if other agents are travelling with them, the maximum speed

achievable by the group.

Penned Agents stop and enter this state when they have reached what they

believe to be the rendezvous location. Agents in this state are not moving.

Agents in this state may transition back to Herded if they are reached by

10

an even faster agent (thus invalidating their current rendezvous location)

or they may terminate if they learn conclusively that their current location

is correct.

Initially, each agent sets σi to Searching, and mi to si. When encountering

another agent, the two agents transmit their values for si, mi and σi. The agents

perform a state transition if necessary, and store the largest of all communicated

speeds as their new value of mi. If an encounter involves more than two agents,

every distinct pair of agents present performs this process in arbitrary order.

The rules for state transitions are relatively straightforward, though not

trivial. For convenience, we denote the two agents in an encounter as A and B,

and without loss of generality we assume mA > mB , meaning that A’s stored

speed is initially greater than B’s stored speed. The transitions for agent A are

as follows:

• If A is in state Searching then it transitions to state Herding. Agent A

turns and begins moving at its maximum speed in the opposite direction.

• Otherwise, agent A does not change its state or direction. If A is in either

state Herding or state Herded, and agent B is slower than any other agent

present, then agent A reduces its current speed to match.

The transitions for agent B are slightly more complex:

• If A is in state Searching then B transitions to state Herded. Agent B

begins moving at maximum speed in the direction opposite to A.

• If A is in state Penned then B transitions to state Penned and stops

moving.

• Otherwise, agent B transitions to state Herded. It begins moving in the

same direction as A, at the smallest speed present in the group.

The case where mB > mA is perfectly symmetric, which leaves only the

case where mA = mB (the agents have the same stored speed). In this case,

both agents stop and enter state Penned. If an agent enters state Penned in

the All-Unique model, it knows that rendezvous has been achieved and that it

may terminate.

11

2.2 Proof of Correctness

Theorem 1. When running the herding algorithm in the All-Unique or Max-

Unique models, all agents eventually stop at the same location on the ring,

achieving rendezvous.

Proof. To see this, we must follow the state transitions of the fastest agent,

Amax. Like all agents, it starts in state Searching and begins moving at max-

imum speed. Since it is the fastest agent and has a unique speed, by moving at

maximum speed it is guaranteed to encounter another agent eventually. At this

encounter, following the state transition rules, it transitions to state Herding

and begins moving at its maximum speed in the opposite directions. The agent

it encountered transitions to state Herded and does the same. At this point,

both agents have smax stored in memory.

Here we know several important facts. First, the two agents are moving

towards each other around the entire ring from their initial point of encounter.

This means that all other agents must be between them in their direction of

movement. Second, we know that no other agent has smax in memory. Agent

Amax has a unique speed, and has only encountered a single agent, thus only

those two agents have smax in memory.

Now consider the segment of ring that lies between the two agents. As the

two agents move, the segment gets smaller and each other agent will encounter

either Amax or its partner. At each such encounter, the agent will be dominated

(since its stored speed must be less than smax) and so it transitions to state

Herded and joins in the circumnavigation of the ring.

Eventually, Amax and its partner will meet again. At this point all agents

stop and transition to state Penned. Rendezvous has been achieved.

Theorem 2. In the All-Unique model, the herding algorithm results in strong

rendezvous.

Proof. Due to theorem 1 we know that all agents must enter state Penned when

rendezvous is reached. Now we simply show that no agent can enter that state

prior to rendezvous being reached. Agents can then know that rendezvous

has been reached when they transition to state Penned, making the rendezvous

strong. Consider some agent Ai. For Ai to enter state Penned it must encounter

12

some other another agent Aj such that either mi = mj (case 1), or mi < mj

and σj = Penned (case 2).

Since all agents speeds are unique in this model, the first case can only occur

when the two agents are connected by some chain of previous encounters. This

implies that their stored speed is maximal among all agents in the chain, which

means that they are both participating in the same circumnavigation of the ring

(headed by the agent Ax such that sx = mi = mj). Ax must have encountered

some other agent at this point, so must be in state Herding.

Since an agent that is participating in a circumnavigation joins the other

agents in that process and travels in lockstep with them, Ai and Aj cannot

both be travelling in the same “prong” of the herd. This implies that the

circumnavigation instigated by Ax must be complete when Ai encounters Aj ,

meaning that rendezvous has been achieved and that Ax = Amax.

The second possible case (mi < mj and σj = Penned) is handled by induc-

tion; since there is no agent faster than Amax, that agent must only enter state

Penned when rendezvous is really achieved. Given this, it must be true for the

second-fastest agent as well, and so on for the third-fastest, etc.

Theorem 3. In the Max-Unique model, the herding algorithm cannot result in

strong rendezvous.

Proof. To show that an agent may enter state Penned prematurely in the Max-

Unique model, consider some agent Ai that is not Amax. As in theorem 2, for

Ai to enter this state it must encounter another agent Aj such that mi = mj ,

or mi < mj and σj = Penned. But unlike in theorem 2, the first of these cases

can happen in any number of trivial scenarios where rendezvous hasn’t been

reached. Since an arbitrary number of agents can have the same speed as long

as that speed isn’t maximal, an adversary can simply place two agents facing

each other with the same speed to start.

If an agent enters state Penned prematurely in this model, then both agents

will transition back into state Herded when an agent knowing some larger speed

comes along. As such, no agent can never know that some agent with an even

larger speed won’t eventually arrive and wake it up again.

Conjecture. We expect that in the Max-Unique model, it is impossible to achieve

strong rendezvous with any algorithm.

13

2.3 Time Analysis

Theorem 4. The herding algorithm finishes in time at most 1
2

(
c+1
c−1

)
n.

Proof. The algorithm can be analyzed in two parts. The first part consists of

the time before Amax encounters any other agent. Since Amax is moving at its

full speed this devolves in the worst case into the “Distributed Race” discussed

by Feinerman et al. [2012]. This part takes at most n/(c− 1) time.

The second part is the time for Amax and its partner to herd all other agents

to rendezvous after their initial meeting. The two agents travel the entire ring

(size n) in opposite directions, and each trivially moves with a speed of at least

1. Therefore this step takes time at most n/2. Putting the two together we get:

n

c− 1
+
n

2
=

2n+ n(c− 1)

2(c− 1)

=
n(2 + (c− 1))

2(c− 1)

=
n(c+ 1)

2(c− 1)

=
1

2

(
c+ 1

c− 1

)
n

Remark 1. This bound implies that if the agents have knowledge of n, knowledge

of c, and some ability to count time, then strong rendezvous is possible even in

the Max-Unique model simply by achieving normal rendezvous and waiting for
1
2

(
c+1
c−1

)
n time to elapse, thus guaranteeing that there are no other agents left.

Remark 2. The algorithm actually achieves a slightly faster running-time than

proved here, because the longer the first part (the distributed race) takes, the

shorter the second part (the herding) must take. Assume the first part takes

time t. Then any agent with speed 1 must be at least distance t(c−1) “behind”

Amax at the point of its first encounter. Therefore when it turns, it must spend

at least time t c−1
c+1 travelling faster than speed 1, so the second part of the

algorithm (the herding) must take less than n/2 time. Unfortunately, we have

not found a concise equation for representing this total tighter running-time.

14

Remark 3. When k = 2 we can give a slightly tighter bound because when

circumnavigating the ring there are no other agents to encounter. This means

agent Amax has no reason to slow down, and ends up travelling at speed c the

entire time. The resulting circumnavigation takes time exactly n/(c+1), leading

to a bound of

n

c− 1
+

n

c+ 1
=
n(c+ 1) + n(c− 1)

(c+ 1)(c− 1)

=
n(c+ 1 + c− 1)

c2 − 1

=
2cn

c2 − 1

2.4 Optimality

In order to prove a useful bound on the optimal algorithm, we first need a few

intermediate results whose utility will eventually become clear.

Lemma 1. An agent may not turn or change its speed except when encountering

another agent.

Proof. We must first observe that agents have very little information to work

with. In fact, an agent Ai initially knows only its own speed, si and has no way

of counting time elapsed or distance travelled. Since the model is deterministic

as we noted in section 1.4, this means that agents have a severely limited set of

criteria on which they are able to make decisions. In fact, there are only two

kinds of events which change the agent’s memory and permit it to make new

decisions: the beginning of the algorithm, and encountering another agent.

On this argument, an agent may turn or change speeds when encountering

another agent (as stated in the lemma) or at the very beginning of the algo-

rithm. But an agent’s behaviour at the beginning of the algorithm is strictly

predictable; since each agent has initial access to only one variable (their own

speed) then any condition embedded in the algorithm must involve some con-

stant test. If the condition is constant, however, then it is trivial for the ad-

versary to construct an otherwise-identical example where all agents fail the

condition and do not turn or change speeds. Therefore without loss of general-

ity we can assume agents do not turn or change speeds at the beginning of the

algorithm.

15

We now consider a particular initial layout of agents that is available to the

adversary. In this layout, the adversary places the agents clumped together on

the ring facing the same direction. The clump is tight (the two “outside” agents

are only a tiny distance, ε, apart) and the agents are ordered by their speed

such that the fastest agent, Amax is at the “head” of the clump and the slowest

agent is at the tail. The speed of each agent Ai is chosen as si = 1 + (i−1)(c−1)
k−1 .

For convenience we shall name this layout “alpha”.

Lemma 2. When starting from layout alpha, no algorithm can achieve the first

agent encounter faster than (n− ε)/(c− 1).

Proof. The proof of this lemma follows trivially from lemma 1. No agent can

turn or change its speed prior to the first encounter, so the fastest way of

achieving rendezvous is for all agents to travel at maximum speed, taking time

(n−ε)/(c−1). This is effectively the Distributed Race algorithm from Feinerman

et al. [2012].

Note that since first encounter is rendezvous when k = 2, this is trivially the

optimal algorithm. We therefore only consider the case k > 2 going forward.

Lemma 3. When the agents are started in layout alpha, then at the time of

first rendezvous the agents are spread equidistant at k − 1 locations along the

ring (we call this layout “beta”).

Proof. First note that by definition we have s1 = 1 and sk = c. From lemma 2

we know it takes time (n−ε)/(c−1) to reach first contact. At this point, A1 and

Ak have encountered one another and occupy the same location. We also know

that each Ai has travelled total distance si(n − ε)/(c − 1). For any agent Ai,

1 < i ≤ k, compare the distance it has travelled against the distance travelled

16

by the neighbour starting immediately behind it, Ai−1. This difference is:

si(n− ε)
c− 1

− si−1(n− ε)
c− 1

=
n− ε
c− 1

(
1 +

(i− 1)(c− 1)

k − 1

)
− n− ε
c− 1

(
1 +

(i− 2)(c− 1)

k − 1

)
=
n− ε
c− 1

(
(i− 1)(c− 1)

k − 1
− (i− 2)(c− 1)

k − 1

)
=
n− ε
c− 1

(
(c− 1)((i− 1)− (i− 2))

k − 1

)
=

(n− ε)(c− 1)(i− 1− i+ 2)

(c− 1)(k − 1)

=
n− ε
k − 1

As A1 and Ak occupy the same location, there are agents at k − 1 locations

on the ring, each one a distance of (n − ε)/(k − 1) from the previous. This is

equidistant within the variance of ε.

We ignore the ε term going forward as it complicates the equations without

materially affecting the result.

Lemma 4. In position beta, every agent Ai has some other agent Aj at distance

at least n
2

(
k−2
k−1

)
from it. Without loss of generality, i < j and j = i+b(k−1)/2c.

Proof. Since the agents are equidistant in position beta, we have two cases.

When k − 1 is even, each agent Ai (1 ≤ i < (k − 1)/2) has another agent Aj

exactly opposite it on the ring, where j = i + k−1
2 . This agent is at distance

n/2 from Ai, and Ai is at distance n/2 from it. The lemma holds since n/2 >
n
2

(
k−2
k−1

)
.

If k−1 is odd then the point opposite Ai (1 ≤ i < k/2) is equidistant between

agent Aj−1 and agent Aj where j = i + k/2. These agents are neighbours and

are thus at distance n
k−1 from each other. Both of these agents are therefore at

distance (n− n
k−1)/2 = n

2

(
k−2
k−1

)
from Ai.

17

Lemma 5. Asymptotically in k, no algorithm can achieve rendezvous in time

better than n
c+3 from position beta.

Proof. Consider any agent on the ring. From lemma 4 we know it must have a

roughly-opposite partner agent. These two agents have a combined speed of:

si + sj = 1 +
(i− 1)(c− 1)

k − 1
+ 1 +

(j − 1)(c− 1)

k − 1

= 2 +
c− 1

k − 1
((i− 1) + (j − 1))

= 2 +
c− 1

k − 1
((i− 1) + (i+ b(k − 1)/2c − 1))

= 2 +
c− 1

k − 1
(2(i− 1) + b(k − 1)/2c)

Also from lemma 4 we know they must be at least distance n
2

(
k−2
k−1

)
apart.

This means that even if they were to head towards each other at their maximum

respective speeds, they cannot rendezvous in better than time:

n
2

(
k−2
k−1

)
2 + c−1

k−1 (2(i− 1) + bk−1
2 c)

This value is obviously decreasing in i, and so must be smallest when i = 1.

This lets us simplify to:
n
2

(
k−2
k−1

)
2 + c−1

k−1b
k−1
2 c

Asymptotically in k (as k goes to ∞), this simplifies further to:

n
2

(
k−2
k−1

)
2 + c−1

k−1b
k−1
2 c

=
n/2

2 + c−1
2

=
n

2(2 + c−1
2)

=
n

4 + c− 1

=
n

c+ 3

Therefore, asymptotically in k, no algorithm can rendezvous in time better

than n
c+3 from position beta.

18

Theorem 5. Asymptotically in k, no algorithm can achieve rendezvous in time

better than 2
c+3

(
c+1
c−1

)
n.

Proof. This result follows simply from lemmas 1, 2 and 5. Given starting po-

sition alpha, any algorithm must take at least time n/(c− 1) to reach position

beta. No algorithm can do better than time n/(c + 3) to achieve rendezvous

from position beta. Together they sum:

n

c− 1
+

n

c+ 3
=
n(c+ 3) + n(c− 1)

(c− 1)(c+ 3)

=
cn+ 3n+ cn− n

(c− 1)(c+ 3)

=
2cn+ 2n

(c− 1)(c+ 3)

=
2n(c+ 1)

(c− 1)(c+ 3)

=
2

c+ 3

(
c+ 1

c− 1

)
n

19

Chapter 3

Stronger Models

In this chapter we consider variants of the problem with more agent knowledge.

We consider the cases where the agents know the values of n, k, or c. We also

consider the case where the agents have pedometers, and the case where agents

have pedometers as well as knowledge.

We construct two variants of the herding algorithm presented in chapter 2.

One depends on knowledge of k but is capable of achieving rendezvous even

in the weaker One-Unique model. The other uses a result of Feinerman et al.

to reduce the running-time of the original algorithm by n
c2−1 , but requires the

agents have pedometers as well as knowledge of n and c.

3.1 Knowledge of n

Giving the agents knowledge of n seems to be relatively useless on its own. The

agents do not have pedometers or timers, so they still cannot tell when they’ve

traversed any given fraction of the ring. As the value of n is the same for each

agent, it does not provide any asymmetry in its own right, and combining it in

some way with an agent’s speed provides no more asymmetry than the speed

would alone.

Of particular interest is that lemma 1 still holds (with effectively the same

proof) when the agents know n. The rest of section 2.4 follows unchanged,

meaning that theorem 5 also holds in this model.

20

3.2 Knowledge of k

Unlike knowledge of n, knowledge of k is obviously useful. It trivially permits

the herding algorithm to achieve strong rendezvous in the Max-Unique model,

while theorem 3 showed that this was impossible otherwise. In fact, knowledge

of k makes strong and normal rendezvous equivalent; if normal rendezvous is

achieved in any circumstance, the agents can simply count how many other

agents are present to make the rendezvous strong.

In this author’s previous paper [Huus, 2013], it was conjectured that ren-

dezvous could not be achieved in the One-Unique model without some additional

agent knowledge. Here we present a variation of the herding algorithm which

achieves rendezvous in this model, given that the agents know k and have a

non-trivial amount of memory. We call this the “non-maximal variant”.

As in chapter 2 we introduce one additional notational convenience. Since

there may be multiple agents with the fastest speed in the One-Unique model,

the label Amax is no longer useful. Instead, there is at least one agent who’s

speed is unique even if it is not necessarily maximal. We therefore denote this

agent AU . We emphasize that, like Amax, the agents are not aware of this label.

3.2.1 The Non-Maximal Herding Algorithm

In the non-maximal variant of the herding algorithm, each agent is required to

store the set of all speeds it has encountered so far, as well as whether it believes

each of those speeds is unique. As there are k agents potentially each with a

unique speed, this requires at least k(1 + dlog ke) = O(k log k) bits of memory

per agent.

Each agent requires an additional 3 bits to store one of five states. Four of

these states should be familiar from chapter 2; Searching, Herding, Herded,

and Penned are all nearly the same. The new state we call Wandering; when

an agent knows it is not AU but does not have any other information, it begins

Wandering simply by moving at its maximal speed in some direction; this is

necessary to prevent the algorithm from getting stuck.

Agents initialize their memory in the obvious way; their set of speeds contains

only their own speed, and that speed is currently believed to be unique. They

start in state Searching, and behave as expected in that state; each agent

21

simply begins moving at its maximal speed. Since AU ’s speed is unique, it is

guaranteed to encounter another agent at some point.

When two agents meet (call them Ai and Aj) they first count the number

of agents present and check against k; if rendezvous has been achieved then the

agents terminate. Otherwise they exchange their set of known speeds and their

state. If A and B have the same speed (sA = sB) then clearly that speed is not

unique and is marked as such by both agents. If one of the agents already has

the other’s speed in memory, then that speed is also marked as not unique by

both. If either agent has seen a speed that the other has not, then that speed

and its corresponding uniqueness flag is copied.

At this point the two agents have the same set of speeds in memory. If

the agents do not know of any unique speeds (for example they have the same

speed, and have only encountered each other) then the agents begin to Wander.

Otherwise what happens next depends on the agents’ states. Assume without

loss of generality that prior to the encounter, the speed that both agents now

believe to be maximally unique was stored in the memory of Ai (either because

it was Ai’s speed or because Ai had already encountered an agent knowing that

speed).

The transitions here are very similar to the normal algorithm. If σi 6=
Herding and the maximal unique speed is si, then Ai and Aj both transition to

state Herding and begin moving at their respective maximum speeds in opposite

directions. Otherwise Aj transitions to state Herded and beings moving in

tandem with Ai. Agent Ai does nothing except potentially slow down to permit

Aj to keep up.

Theorem 6. The non-maximal variant of the herding algorithm achieves strong

rendezvous in the One-Unique model.

Proof. First note that we need only show that normal rendezvous is achieved. As

k is known to the agents, normal rendezvous trivially implies strong rendezvous.

Unlike the normal herding algorithm, where the correctness of the algorithm

was relatively intuitive, the correctness of the non-maximal variant is not. To

see it, we must follow what happens to the fastest agent (or any one of the

fastest, if there are multiple agents with speed smax). We will show that this

agent must eventually either:

• realize that its speed is not unique, or

22

• bring all agents to rendezvous if its speed is unique.

We will then show that this property applies inductively; once it is true for all

agents faster than Ai it must eventually become true for Ai. It therefore follows

that eventually it will become true for AU . Since AU ’s speed is the largest such

speed that is unique, it must eventually bring all agents to rendezvous.

Now consider what happens to some fastest agent Amax as the algorithm

executes. There must be some agent which is slower than it (if not then all

agents have speed smax which contradicts our assumption of at least one agent

with a unique speed), so it must eventually encounter some other agent. When

this occurs there are two cases. The other agent may already have smax in

memory, in which case Amax realizes its speed is not unique and we are done.

If not then they both transition to state Herding and begin moving in opposite

directions.

Now Amax must eventually encounter another agent with smax in memory.

Since every other agent is between it and its partner, we again have several

cases:

• If there is no other agent with speed smax then it will eventually encounter

its herding partner again with all k agents present, achieving rendezvous.

• If there is some other agent with speed smax then that agent (or an agent it

has encountered) must encounter Amax first, at which point Amax realizes

that its speed is not unique.

This suffices to show our base case. Our inductive hypothesis is that for some

agent Ai, all faster agents know themselves to not have a unique speed. Now

we can take the inductive step.

If Ai already knows its speed isn’t unique then we are easily done, so we

consider the case whereAi believes its speed to be unique (though not necessarily

maximally so). If Ai still believes that some other faster speed is unique then

it will continue moving in state Herding or Herded until it encounters an agent

which can tell it otherwise. Once it believes that its own speed is both maximal

and unique, then the process it follows is identical to the process described in

detail for Amax above. On its next encounter it either knows it is not unique, or

it begins Herding. Once in that state it either herds all agents to rendezvous, or

must encounter another agent with the same speed, proving it is not unique.

23

3.3 Knowledge of c

When we discuss knowledge of c we specifically do not mean knowledge of the

actual fastest speed; as we have already seen, c is defined as the normalized ratio

between the fastest and slowest speed. If the agents instead know the actual

fastest speed then this leads to a trivial algorithm: all agents know whether or

not they are the fastest or not, so the fastest stays put and all other agents

move to join. This takes time at most n and requires no memory.

Knowledge of c (the ratio) can potentially be useful in its own right however.

Specifically, an agent Ai can use just its knowledge of its own speed si combined

with its knowledge of c to determine the range of valid speeds for all other agents:

no agent can possibly have a speed slower than si/c, and no agent can possibly

have a speed faster than sic. When two agents meet, they can exchange bounds

and narrow the window of valid speeds. If a fastest agent (with normalized speed

c) meets a slowest agent (with normalized speed 1) then they both immediately

know that they are the fastest/slowest agents, respectively.

While this knowledge does not obviously lead to a better general-case algo-

rithm in any model, it does potentially lend itself to improvements in specific

cases.

3.4 Using Pedometers

Like knowledge of n, giving agents pedometers on their own is relatively use-

less without something to compare against. However, pedometers do give us

one small advantage: since agents know their own speed, the two can be used

in combination to construct a timer. As with knowledge of c, this does not

obviously lead to any improvements.

3.5 Pedometers and Knowledge

While knowledge of n (section 3.1), knowledge of c (section 3.3) and pedometers

(section 3.4) have not proved particularly fruitful lines of enquiry on their own,

in combination they produce a much more interesting result. Feinerman et

al. proved in their paper that the optimal two-agent rendezvous in this case

required time cn
c2−1 [Feinerman et al., 2012]. Using this as a component, we can

construct a second variant of the original herding algorithm, which we will call

the “fast herding algorithm”.

24

3.5.1 The Fast Herding Algorithm

The fast herding algorithm is in almost all respects identical to the herding

algorithm presented in chapter 2. The only difference is in the initial step.

Instead of using the plain “distributed race” of Feinerman et al. we have each

agent execute the optimal two-agent algorithm given as part of theorem 1 in that

paper. As the two-agent case is the degenerate one, this guarantees that Amax

will reach its first encounter in time at most cn
c2−1 . The proof of correctness

given for theorem 1 can be trivially adapted to show that this fast variant also

achieves rendezvous. More interesting is the running-time.

Theorem 7. In the Max-Unique and All-Unique models, the fast herding al-

gorithm achieves rendezvous in time that is n
c2−1 faster than the normal herding

algorithm, specifically in time 1
2

(
c+1
c−1

)
n− n

c2−1 .

Proof. The proof of this follows the same form as the proof of theorem 4. The

initial encounter for Amax, as we have seen, can take at most cn
c2−1 . The herding

to rendezvous after that initial step takes at most time n/2. Adding together

we get:

cn

c2 − 1
+
n

2
=

2cn+ n(c2 − 1)

2(c2 − 1)

=
n(2c+ c2 − 1))

2(c2 − 1)

=
n((c+ 1)(c+ 1)− 2)

2(c2 − 1)

=
n(c+ 1)(c+ 1)

2(c+ 1)(c− 1)
− 2n

2(c2 − 1)

=
1

2

(
c+ 1

c− 1

)
n− n

c2 − 1

Remark 4. Following remark 1 we can make a similar point here. Since the

agents do have knowledge of n, c and a pedometer (which we mentioned in

section 3.4 could be used to construct a timer) this implies that even in the

Max-Unique model, strong rendezvous is achievable by the fast herding algo-

rithm given enough memory. Agents simply run the algorithm and then wait

for their timer to expire.

25

Remark 5. As with the original algorithm (see remark 3) we can give a slightly

tighter bound when k = 2.

cn

c2 − 1
+

n

c+ 1
=

cn

(c+ 1)(c− 1)
+

n

c+ 1

=
cn+ (c− 1)n

c2 − 1

=
(2c− 1)n

c2 − 1

=
2cn

c2 − 1
− n

c2 − 1

26

Chapter 4

Conclusion

In this paper we have studied the rendezvous problem for k ≥ 2 agents on the

ring, using differences in agent speed to break symmetry and achieve rendezvous

with good guaranteed running-times. We extended the simple k = 2 case to four

different k ≥ 2 models, and presented the herding algorithm which achieves

rendezvous in the two stronger of these models. We also prove a bound on the

optimal algorithm in those models.

We further studied the cases where agents had knowledge or capabilities

above and beyond those available in the base model. We present two variants on

the herding algorithm, one of which makes use of additional knowledge to achieve

a better running-time, and one of which is capable of achieving rendezvous even

when guarantees about agent speed distribution are weakened.

As with any new and active field, there are many open questions for future

research. In particular, this paper has generate several new unsolved problems

of interest. Remark 2 suggests that a better running-time bound can be proven

for the herding algorithm; a tighter bound on the optimal algorithm also seems

like it might be possible.

We additionally conjectured that strong rendezvous is impossible in the

Max-Unique model without additional knowledge. Theorem 6 showed the con-

trapositive of this (that strong rendezvous is possible when given additional

knowledge), and theorem 3 showed that strong rendezvous is not possible with

the original herding algorithm. We suspect a variant of that argument would

suffice to show this conjecture.

27

Bibliography

Alpern, S. (2002). Rendezvous search: A personal perspective. Operations

Research, 50(5):772–795.

Czyzowicz, J., Ilcinkas, D., Labourel, A., and Pelc, A. (2010). Asynchronous

deterministic rendezvous in bounded terrains. CoRR, abs/1001.0889.

Dieudonné, Y., Pelc, A., and Villain, V. (2013). How to meet asynchronously

at polynomial cost. CoRR, abs/1301.7119.

Feinerman, O., Korman, A., Kutten, S., and Rodeh, Y. (2012). Rendezvous of

agents with different speeds. CoRR, abs/1211.5787.

Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., and Sawchuk, C. (2004).

Multiple mobile agent rendezvous in a ring. In Farach-Colton, M., editor,

LATIN 2004: Theoretical Informatics, volume 2976 of Lecture Notes in Com-

puter Science, pages 599–608. Springer Berlin Heidelberg.

Hegarty, P., Martinsson, A., and Zhelezov, D. (2013). A variant of the multi-

agent rendezvous problem. CoRR, abs/1306.5166.

Huus, E. (2013). Breaking symmetry with agents of different speeds.

Kranakis, E., Krizanc, D., and Markou, E. (2010). The Mobile Agent Rendezvous

Problem in the Ring: An Introduction. Synthesis Lectures on Distributed

Computing Theory Series. Morgan & Claypool Publishers.

Sawchuk, C. (2004). Mobile Agent Rendezvous in the Ring. PhD thesis, Carleton

University.

28

Schneider, J. and Wattenhofer, R. (2010). A new technique for distributed sym-

metry breaking. In Proceedings of the 29th ACM SIGACT-SIGOPS Sympo-

sium on Principles of Distributed Computing, PODC ’10, pages 257–266, New

York, NY, USA. ACM.

Yu, X. and Yung, M. (1996). Agent rendezvous: A dynamic symmetry-breaking

problem. In Meyer auf der Heide, F. and Monien, B., editors, ICALP, volume

1099 of Lecture Notes in Computer Science, pages 610–621. Springer.

29

	Introduction
	The Rendezvous Problem
	Breaking Symmetry
	Agent Speed Differences
	Our Models
	Our Results

	The Herding Algorithm
	Presentation of the Algorithm
	Proof of Correctness
	Time Analysis
	Optimality

	Stronger Models
	Knowledge of n
	Knowledge of k
	Knowledge of c
	Using Pedometers
	Pedometers and Knowledge

	Conclusion

