Introduction to GraphQL

July 13,2018
MidDevCon
Baltimore, MD

@ShopifyDevs
http://developers.shopify.com

Al shopify



Welcome! My name is
Evan

I'm here to lead this session and

help you learn all about GraphQL!

+ I'm a Developer Lead at Shopify,
in Canada

My favorite programming
language/tool is Golang

- Join us on the MidDevCon Slack

in #introtographq|

+ Tweet along with the workshop

and tag @ShopifyDevs!

Evan Huus, Developer Lead, Shopify

s | shopify



5% ATLANTIC f¢
(4 —DEVCON—} %)
- &

TN rhkx P

Coud - Mobile - Web - Dev

Thanks to
Our Sponsors

SOFTWARE ixc.

<||I

elastic [} shopify

: CollabraSpace  RingCentral
Technically

@ 0OSMI (& square



Shout out: MLH Localhost

imL

MAJOR LEAGUE HACKING

e Special thanks to Major League Hacking, who created these workshop
materials

e Major League Hacking (MLH) powers over 200 weekend-long invention
competitions that inspire innovation, cultivate communities and teach
computer science skills to more than 65,000 students around the world.

e Localhost is their “between hackathon” workshop offering

https://mlh.io/
@MLHacks



What will you learn today?

1. Why are APIs important?

2. Explain the difference between RESTful and
GraphQL APIs.

3. Write your first API calls using GraphQL.



Why does this matter?

1. APIs are a large part of how applications

communicate with each other.
2. GraphQL is a new way to interact with APIs.

3. GraphQL solves certain problems caused by
RESTful APIs.



oS g A W DN

Table of contents

. Introduction to APIs and GraphQL

Preview the app

Set up Shopify storefront
Write your own GraphQL calls
Review

Next steps



Why are APIls important?

Example: Google APIs
e Google offers a number of APIs that developers can use in their own applications:
e (oogle Maps API
e (Google Fonts API
e (Google URL Shortener API

e and many more!

For example, an application that you use to find a restaurant might use the Google Maps API to show you

restaurants near your current location.



What is REST?

REST stands for Representational State

Transfer. AL

Most modern APIs are RESTful APIs. ) )
name .

Every resource has its own URL. e
topics

Data is generally returned in JSON
(JavaScript Object Notation) ->

"Peers Conf",

: "Austin®,

2 [ "GraphQL",
"Shopify"]




What is GraphQL?

GraphQL stands for Graph Query Language.

APIs written using GraphQL schemas have only hero ¢

name

one endpoint that return a data graph !

When using a GraphQL API, an application can
request multiple resources at a time and only S ——
receive what it needs. The information returned

looks like this:



Query

The graph in GraphQL

A partial data graph

Node

Edge

Name

Hero

Height

GraphQL schema

type Hero {

}

name: String
height: Float



GraphQL execution

A partial data graph Resolver

Node \E“Qe name(hero) {
r— | return hero.name

Query Hero ' }
Height




Benefits of GraphQL

GraphQL allows you to specify the information you want
to retrieve.

GraphQL has a feature called "introspection” where
developers can use commands to ask the server about
what queries are allowed.

GraphQL allows you to retrieve information from multiple
data sources in a single request, speeding up your web
application.

GraphQL can be implemented in many languages and

there's a strong community to help!

GraphQL



GraphQL basics

There are three types of GraphQL calls - queries,
subscriptions, and mutations. In this workshop, you will
explore one query and one mutation.

Query: a GraphQL call that retrieves information from an
application through an API.

Mutation: A GraphQL call that updates information in an

application’s database through an API.

GraphQL



GraphQL query structure

A GraphQL query:
e begins with the keyword "query" followed by a set of curly braces
e hasa Query Root as its first requested field
e Inthe query below, the Query Root user accepts an argument id that has a value of the user's id number

e This query is requesting the user's name, email, and birthday which are fields

query {
user (id: "abcl23") {

name

email
birthday
}




GraphQL response
structure

A GraphQL response:

e returns information in the same way that it was requested

e can return error messages if the queries are written incorrectly

"user": {
"name" :

"email":
"birthday":
}




GraphQL users

Facebook created GraphQL. Coursera’s engineering team was
in the process of designing their own replacement for RESTful
APIs when they found GraphQL and decided to use it instead.
Now, it's being used by Github, Pinterest, Coursera, and of

course Shopify!

EHO®E




GraphQL at Shopify

Shopify has been using GraphQL internally for

several years.

Shopify now has two public GraphQL APIs.

Today we'll be using the Storefront API which is
designed for building customer-facing shopping flows.
The other one is the Admin API which is for building

merchant-facing applications.



o o~ w BN

Table of contents

. Introduction to APIs and GraphQL

Preview the app

Set up Shopify storefront
Write your own GraphQL calls
Review

Next steps



Try the demo application:
https://nl-localhost-shopify.herokuapp.com/

Goal: Snake 2000

Purchase power-in a game using
the Shopify Storefront API

Technologies:
Node.js
JavaScript
HTML / CSS
GraphQL




Step1: install Node
nede

Follow the installation instructions for the type of computer you have at the
following URL:

https://nodejs.org/en/download/

Let me know if you have any trouble!



Step 2: download the
sample code

To get the sample code, enter this URL in your browser:

https://bit.ly/GraphQLIntro

Let me know if you have any trouble!


http://bit.ly/GraphQLIntro

Step 3: unzip files

$ cd ~/Downloads

(]
$ Expand-Archive mlh-localhost-shopify-graphgl-master.zip . Wlndows

Do not forget
the "." in this
command

$ cd ~/Downloads

Mac

$ unzip mlh-localhost-shopify-graphqgl-master.zip



Step 4: run the Node server

Mac and Windows
00
$ cd mlh-localhost-shopify-graphgl-master
$ 1s
README.md node_modules/ package.json public/ server.js
$ node server.ijs

Listening on http://localhost:56000/



Step 5: navigate to the URL
below

localhost:5000

Notice something missing?

Game Store




2 B0 )

Set up Shopify for development

https://developers.shopify.com

Creating a developer account.

Creating a development store on your account.
Creating an app on your store.

Setting up free payments on your store.


http://developers.shopify.com

| ShOplfy WHATTOBUILD ~ APIS - GUIDES~ COMMUNITY Developerlogin [

The future of commerce

Built by you



http://developers.shopify.com

Register for a Shopify developer
account K

Create your new
Shopify account

our account will allow you to partner with

3. Enter your name and
email address

4. Choose a password

5. Click “Create account”




Register for a Shopify developer
account N

Add details about your business

Business name

GraphQL Inc

6. Fill in the rest of the T Tr————

Generic business email

form and click “See ———

The email where all general account info will be sent.

Partner dashboard” at the

GraphQL is my life

bottom.

‘ Austin

Country

‘ United States

State

Texas
WHAT WOULD YOU LIKE TO LEARN MORE ABOUT?
[ Basic Shopify store setup

Custom Shopify store design




Register for a Shopify developer
account

7. Click “Development stores.”

. GraphQL |
() Shoplfypafmé’fs Q Search (! \Jvza;P(%;:‘;J njL Developer

2 Development stores

Managed stores ResourceS
Referred stores
Affiliate tools

Apps Partner Perks Whether you're designing stores, building apps, marketing for a merchant, or just

looking to manage your business better, Shopify Partner Perks are for you. Perks
Exclusive discounts on tools that help you are a collection of discounts from leading software companies exclusive to Shopify
run your business. Partners, that help you accelerate your business for less.

Themes

Payouts

: Access perks
Settings

Team



Register for a Shopify developer
account

8. Click “Create store”

Start a new project with a




Register for a Shopify developer
account

9. Give your store a unigue name, don't use “snake game” or anything similar because
the name needs to be unique to your store.
10. Fill in the rest of the form and then click “Save.”

New development store




Get credentials

11. On the left side of the home screen, click "Apps".
12. Click "Manage private apps" on the bottom of the next screen.

TA t‘es‘tftor? g,‘]rya‘p})hql Ad...

s shoplfy Q_ Ssearch

Home o
Good evening, test store graphql.

Orders Here's what's happening with your store today.
Products

Customers

Analytics @ @ o

Discounts No sales yet No orders yet No visits yet

)
M|
Y
&
dil
@

Apps

SALES CHANNELS
0

% Online Store Visitors right now

Add a product to start selling

Take the first step to launching your store. Add physical items, digital downloads, services, or anything else
you can dream up.

Add product




Get credentials

13. Click “Create a new private app.”

< Apps

Private apps

Create a new private app

Private apps can streamline store processes like accounting, importing products,
or even create unique customer-facing storefronts.

Create a new private app

@ Learn more about private apps.




Get credentials

14. Name your private app.
15. Enter an email.
16. Click "Allow this app to access your storefront data using the Storefront API."
17. Click "Save."

S ShOplfy Q_ search TA tke’slksmr‘egr'a‘phqlAd___

Home < Private apps

Create private app

Orders
Products
Customers
Analytics Description Private app name
Discounts These details can help you keep track of

your private apps.

Apps
£ Contact email (optional)

SALES CHANNELS

ﬁ Online Store

Admin API Your API credentials will be generated when you Save.

These permissions determine what data
your private app can access. It is
recommended that you enable only what is
necessary for your app to work.

Store content like articles, blogs, comments, pages,
and redirects Read access
read_content, write_content

Customer details and customer groups
read_customers, write_customers

Learn more about API authentication. Read access




storeFrontAPI = "https://name-of-your-store.myshopify.com/api/graphql”;
storeFrontAccessToken = "12345acbde”;




storeFrontAPI = "https://name-of-your-store.myshopify.com/api/graphql”;
storeFrontAccessToken = "12345acbde”;

) test store graphql ~ Create pr x §

= C @ Secure  https:/)test-store-graphqgl.myshopify.com/ac



Set up payments

Now that you have connected your store to your application, return to your Storefront
home page in your browser so that you can set up payments.
1. Click "Settings" at the bottom of your screen.

8\ shopify Q search o ol

Good evening, test store graphg|l.
Here's what's happening with your store today.

Add a product to start selling

Take the first step to launching your store. Add physical items, digital downloads, services, or anything else
you can dream up.

Add product

Customize your online store to match your brand

Choose a theme and make it stand out with a custom logo, product slideshow, and other features.



8 shopify

Home
Orders
Products
Customers
Analytics

Discounts

A
M|
Y
il
@

Apps

SALES CHANNELS

ﬁ Online Store

Set up paymen

2. Click “Payment providers”

Settings

General
View and update your store
details

Payment providers
Enable and manage your
store's payment providers

Checkout
Customize your online
checkout process

Shipping
Manage how you ship orders
to customers

Taxes
Manage how your store charges
taxes

Gift cards
Enable Apple Wallet passes and
set gift card expiry dates

Notifications
Manage notifications sent to you
and your customers

Files
Upload images, videos, and
documents

TA

Sales channels
Manage the channels you use to
sell your products and services

Account
Manage your accounts and
permissions

Billing
Manage your billing information
and view your invoices

test store graphqgl Ad.



Set up payments

3. Scroll to "Manual payments” and select "Create custom payment method."

Manual payments

Provide customers with instructions to pay outside of your online store. Choose
from cash on delivery (COD), money order, bank deposit, or create a custom
solution.

Create custom payment method <




Set up payments

4. Give your payment method a name and click "Activate.”

Manual payments

Provide customers with instructions to pay outside of your online store. Choose from cash
on delivery (COD), money order, bank deposit, or create a custom solution.

Create custom payment method *

Name of the custom payment method

Snake Example

Additional details

Displayed on the Payment method page, while the customer is choosing how to pay.

Payment instructions

Displayed on the Thank you page, after the customer has placed their order.

Cancel




Add power-ups to the storefront %

Now that you have created your Storefront, we're going to
add the power-ups to the store!

Let us know if you're still setting up! &



Add power-ups to store

1. Return to your account home page on Shopify.
2. Onthe upper left-hand side of the screen, click "Products.”
3. Then, click "Add Product."

S Shopify Q_ Search

TA test“st‘o‘re g‘raﬁhqi Ad...

Home .
Good evening, test store graphq|l.

Orders Here's what's happening with your store today.

Products
Customers
Analytics

Discounts

A
&
Y
&
ol
@

Apps

SALES CHANNELS
0

= online Store Visitors right now

Add a product to start selling

Take the first step to launching your store. Add physical items, digital downloads, services, or anything else
you can dream up.

Add product




Add power-ups to store

4. Name the product "Extra Life."
5. Give the product a simple description, like "Extra Life Power-Up."

Add product

Title

Short Sleeve T-Shirt




Add power-ups to store

6. Upload public/images/storefront-images/extra-life.png image from the
project folder you downloaded.

7. Verify that "Charge taxes on this product” is NOT checked.

8. Verify that "This is a physical product” is NOT checked.

Unsaved product

A~ |B|7|U|=B|8 T F| kv |4~
% Bv @ = O

Extra Life Power-Up




Add power-ups to store

9. At the bottom of the page, click "Edit website SEO."

10. In the URL and handle field, change the name from "extra-1ife"to
"power-up-1." It must be spelled and formatted exactly like this for the
game to work.

Images Add image from URL Add images




Add power-ups to store

The game we previewed at the beginning of this workshop had four

power-ups. Repeat the process you just completed to add the Speed Boost
Power-Up.

Be sure to:
e Upload the "speed-boost.png” image
e Uncheck "Charge taxes on this product” and "This product requires
shipping"
e Change the website seo to be "power-up-2"



o g A~ w W

Table of contents

. Introduction to APIs and GraphQL

Preview the app

Set up Shopify storefront
Write your own GraphQL calls
Review

Next steps



What queries do we need?

Now that you have set up your Storefront and connect it to your application, you
need to write the GraphQL queries that will retrieve information from your

Storefront and purchase items. Three queries are necessary:

1. Retrieve the products from your store
2. Create the Checkout
3. Complete the Checkout



Code review: queries.js

In queries.js, there is a function called makeRequest() that sets up our request

with the necessary information.

makeRequest ( R |
headers = {
"X-Shopify-Storefront-Access-Token'": storeFrontAccessToken,
"Content-Type": "application/json"

$.ajax ({
url: storeFrontAPI
type: "POST",
data: JSON. ({ query: query }),
headers: headers




Write your first GraphQL call

https://help.shopify.com/en/api/custom-storefronts
/storefront-api/graphql-explorer

We want to retrieve information from our shop. In order to complete our game, we need

to retrieve the title of each product and its image.

Navigate to the URL above to access GraphiQL, a tool that allows you to test your

GraphQL queries.



WRNOUIHWN

GrapthL U

# Welcome to GraphiQL

#

# GraphiQL is an in-browser IDE for writing, validating, and

# testing GraphQL queries.

#

# Type queries into this side of the screen, and you will

# see intelligent typeaheads aware of the current GraphQL type sc
# live syntax and validation errors highlighted within the text.
"

# To bring up the auto-complete at any point, just press Ctrl-Spc
#

# Press the run button above, or Cmd-Enter to execute the query,
# will appear in the pane to the right.

# We'll get you started with a simple query to get your shop's nc




GraphiQL (P | Pretty | Hitor

Documentation Explorer

Q_ Search Schema...

A GraphQL schema provides a root type for each
kind of operation.

ROOT TYPES

query: QueryRoot

mutation: Mutation




GraphiQL @  Prettify | | History | < Schema QueryRoot

Q_ Search QueryRoot...

4
o)

sho|
ngmc{e The schema's entry-point for queries. This acts as
} the public, top-level API from which all queries
must start.

[ aad

1
2
3
4
5
6

FIELDS

customer(customerAccessToken: String!):
Customer

node(id: IDY): Node

nodes(ids: [ID!]!): [Node]!

shop: Shop!




GraphiQL (B | Prettify | History | < QueryRoot

Q_ Search Shop...

Shop represents a collection of the general
settings and information about the shop.

U A WN

FIELDS

articles(
first: Int
after: String
last: Int
before: String
reverse: Boolean = false
sortKey: ArticleSortKeys = ID
query: String
): ArticleConnection!

List of the shop' articles.

blogs(
first: Int
after: String
last: Int
before: String
reverse: Boolean = false
sortKey: BlogSortKeys = ID
query: String
: BlogConnection!

List of the shop' blogs.



GraphiQL | i : < Shop products

4
iy

List of the shop’s products.
shop {

products

} TYPE

o

1
2
3
4
5
6

ProductConnection!

ARGUMENTS

first: Int

after: String

last: Int

before: String

reverse: Boolean = false

sortKey: ProductSortKeys = ID
query: String




GraphiQL (B | Pretiy | | History |

1v{
2« shop {
3+ products {
4~ edges {
node {
id

-

“data": null,
“errors”: [

"message”: "you must provide one of first
or last",
"locations": [

“shop",
"products”

< Shop products

List of the shop’s products.

TYPE

ProductConnection!

ARGUMENTS

first: Int

after: String

last: Int

before: String

reverse: Boolean = false

sortKey: ProductSortKeys = ID



GraphiQL (B | Prety | | History |

1+{
2+ shop {
3~ products(first: 2) 4|
4~ edges {
node { “message”: "you must provide one of
id first or last”,

- "locations": [

"products”




L @ | Prettify | | History | < Shop products

1v{ List of the shop’s products.
2~ shop {

3~ products(first:2) { 5
edges { TYPE
node { &
id { ProductConnection!

ARGUMENTS

first: Int

after: String

last: Int

before: String

reverse: Boolean = false
sortKey: ProductSortKeys = ID

query: String
Supported filter parameters:

title
product_type
vendor
created_at
updated_at
tag




GraphiQL  (B) | Pretty || History |

1v{
I~
Cid
4+

shop {
products(first:2) {
edges {
node {
id

s

"data": {
"shop”: {
"products”: {
“edges": [

U O L

"node": {
“ig"

"Z21 kOiBVCZhVCG'lnleéSanBdeNOsz40TUyNzYw0Tk="
}

} ’
4t
"node":
"id":
"Z21k01i8vczZhvcGlmeS9QcmIkdWNAL zk40TUYNZKwNDM="
}

< edges ProductEdge

Q_ Search ProductEdge...

No Description

FIELDS

cursor: String!
A cursor for use in pagination.
node: Product!

The item at the end of ProductEdge.




GraphiQL () | Pretity | | Hisory |

< products ProductConnection DG

1+ Q Search ProductConnection...
2~ shop { )
3~ products(first:2) { No Description
4 edges { 5t
nog: { ¢ FIELDS
title
} edges: [ProductEdge!]!
} "Z21k018vczZhvcGlmeSIQcmIkdWNALzk40TUYNZYWOTk="
"title": "Snare Boot" : Alist of edges.
} pagelnfo: Pagelnfo!
! Information to aid in pagination.
"node": {
wid"
"Z21k018vcZhvcGlmeSIQemOkdWNOL zk40TUYNZKWNDM=" ,
"title": “"Neptune Boot"




GraphiQL (B) | Pretity | | History |

1+ { {
2~ shop { "data": {
3~ products(first:2) { "shop": {
4~ edges { "product
node { "edges": [
id
"node": {
"id"
"Z21k018vcZhveGlmeSIQcmOkdWNAL zk40TUYNZYWOTk="
}

}7
{
"node": {

"id"s
"Z21k018vcZhvcGlmeSIQemIkdWNAL zk40TUYNZkwNDM="

< ProductEdge

Q Search Product...

A product represents an individual item for sale in
a Shopify store. Products are often physical, but
they don't have to be. For example, a digital
download (such as a movie, music or ebook file)
also qualifies as a product, as do services (such as
equipment rental, work for hire, customization of
another product or an extended warranty).

IMPLEMENTS

Node

FIELDS

collections(

first: Int

after: String

last: Int

before: String

reverse: Boolean = false
: CollectionConnection!

List of collections a product belongs to.



GraphiQL @ | Prettify | | History | < ProductEdge

1+ {
2~ shop {
3~ products(first:2) {
4+ edges {
node {
id

Q_ Search Product...
"data": { o . .
"shop": { A prodl_:ct represents an individual item fpr sale in
"products a Shopify store. Products are often physical, but
“edges” they don't have to be. For example, a digital
° download (such as a movie, music or ebook file)
= s also qualifies as a product, as do services (such as
"323” ; { equipment rental, work for hire, customization of

< another product or an extended warranty).
"Z21k018vczZhvcGlmeS9QcmIkdWNOLzk40TUYNZYWOTk="
}

I e, G R

i IMPLEMENTS
"node": {
"idns
"Z21k018vczZhvcGlmeSIQcmIkdWNAL zk40TUYNZKwNDM="
}

Node

FIELDS

collections(

first: Int

after: String

last: Int

before: String

reverse: Boolean = false
): CollectionConnection!

List of collections a product belongs to.



GraphiQL () | Pretty | | Hitory |

1~ {
2~ shop {
3+~ products(first:2) {
4 edges {
node {
id

< ProductEdge

Q_ Search Product...

A product represents an individual item for sale in
a Shopify store. Products are often physical, but
they don't have to be. For example, a digital
download (such as a movie, music or ebook file)
also qualifies as a product, as do services (such as
equipment rental, work for hire, customization of
another product or an extended warranty).

IMPLEMENTS

Node

FIELDS

collections(

first: Int

after: String

last: Int

before: String

reverse: Boolean = false
): CollectionConnection!

List of collections a product belongs to.



GraphiQL  (B) | Pretty | | History

< Product ImageConnection

iv{
2~ shop {
3+ products(first: 2) {
4 edges {
node {
titlel

™

Q_ Search ImageConnection...
dﬂ:::o;";[ { No Description
"products”: {
egges : [ FIELDS
"node": {
"title": "Snare Boot" edges: [ImageEdge!]!
} ! A list of edges.
2
t "node”: { pagelnfo: Pagelnfo!
node":

"title": "Neptune Boot"

(e, (B PRC ML !

Information to aid in pagination.




GraphiQL @ | Prettify | | History | < Product ImageConnection

1v{ i Q_ Search ImageConnection...

2~ shop { o
3. products(first: 2) { "errors”: [ No Description
4~ edges {

S5+ node { “message”: "you must provide one of first
6 title or last",

7~ images { - "locations": [

8~ edges { { edges: [ImageEdgel!]!
9 node { "line": 7,

10 id column™s A list of edges.
11

lz ]'

13 "path": [ Information to aid in pagination.
14 “shop",

15 “products",

16 “edges”,

17 0,

18 “node",

19 "images”

FIELDS

pagelnfo: Pagelnfo!




GraphiQL

1v{

2~ shop {

3~ products(first: 2) {
4~ edges {

S5+ node {

6 title

7~ images(first:1) {
8+~ edges {

9 node {

10 id

11

12

13

14

15

16
17
18

19

“title": “"Snare Boot",
"images": {
“edges": [

“node": {
"id":
"Z21k018vc2hvcGlmeSIQcmIkdWNOSWLhZ2UvM] EyNZKxXNT
Y50TU="

< Product ImageConnection

Q_ Search ImageConnection...

No Description

FIELDS

edges: [ImageEdge!]!
A list of edges.
pagelnfo: Pagelnfo!

Information to aid in pagination.




GraphiQL | Prettity | | History |

1v{
shop {
products(first: 2) {
edges {
node {
title
images(first:1) {
edges {
node {
id

~

"data": {
“shop": {
"products
“edges”

s I K R B

are Boot",

< ImageEdge
Q_ Search Image...

Represents an image resource.

FIELDS

altText: String
A word or phrase to share the nature or content...
id: ID
A unique identifier for the image.
src: URL!

The location of the image as a URL.




GraphiQL () | Prety | | History

1~ {

2~ shop {

3~ products(first: 2) {
4 edges {

S5+ node {

6 title

7~ images(first:1) {
8~ edges {

9 node {

10 src

11

12

13

14

15

16

17

18 '}

19 |

"https://cdn.shopify. com/s/i"iles/l/1312/0893/pr
oducts/001_grande_89f870@ed-dc56-4990-9aa5-
4f11ddf13108. jpg7v=1491918957"

}

< ImageEdge
Q_ Search Image...

Represents an image resource.

FIELDS

altText: String
A word or phrase to share the nature or content...
id: ID
A unique identifier for the image.
src: URL!

The location of the image as a URL.




GraphiQL (B) | Pretty | | History |

-~

shop {
products(first: 2) {
edges {
node {
title
images(first:1) {
edges {
node {
src
}
by

¥
variants(first: 1) { "https://cdn.shopify.com/s/files/1/1312/0893/products/00
edges { 1_grande_89f870ed-dc56-4990-9aa5-4f11ddf13108. jpg?
node { v=1491918957"
id

"data": {

2 IS R

]




Write your first GraphQL call:
queries.|s

19 // Queries for product information
20 fetchProducts () {

21 var query =

22 query {

23 shop {

24 products (first: 4) {

25 edges {

26 node {

27 title

28 images (first: 1) {
29 edges {

30 node {

31

32 }

33 }

34 }

35 variants (first: 1) {
36 // Code Continues Below




Let's test the game

1. Type [CTRL] [C] in the command line to kill the server.

2. Typenode server.]js torestartthe server.

Mac and Windows

$ [CTRL C]

$ node server.js

Listening on Port 5000




Score: 0




What queries do we need?

We completed the first query. Now let's do the second!

+—RetrevetheproductsHroryourstere
2. Create the Checkout
3. Complete the Checkout



Write a mutation: Delete the double slashes / / on lines 53 to 64 in
queries.js

// function buyPowerUp (variantId) ({
// var query = °

// mutation {

// checkoutCreate (input: {
// lineItems: [{

//

// }H

// P |

// checkout {

//

// }

// }

// }

//

//

// return makeRequest (query) ;
// }




Code review

Line 55 declares a function called buyPowerUp () that takes a single argument,

variantId.

variantIdisthe power-up that the user clicked on the website.

Line 56 creates a new variable called query.

buyPowerUp (
query =

makeRequest (query) ;




Code review

Your code should look like this. Let's break it into parts.

buyPowerUp (
query = -
mutation {
checkoutCreate (input: {
lineItems: [{

H
P A

checkout {

}
}

makeRequest (query) ;




Code review

Line 55 begins the mutation
Line 56 specifies which mutation - checkoutCreate ()
Because checkoutCreate () is a mutation, it takes an argument, input (line 56),

and returns a value, checkout (line 61).

mutation {
checkoutCreate (input: ({
lineItems: [{

H

DI

checkout {




Code review

At https://help.shopify.com/api/storefront-api/reference/mutation/checkoutcreate,

you can see a list of input fields that the input argument accepts.

e Online 59, the 1ineItems input field is added.

e The lineItems input field provides information about the items purchased.

mutation {
checkoutCreate (input: ({
lineItems: [{

H

DI

checkout {




Challenge

Navigate to

https://help.shopify.com/api/storefront-api/reference/mutation/checkoutcreate

and explore the documentation to find which arguments 1ineItems requires.

mutation {
checkoutCreate (input: ({
lineItems: [{

H

DI

checkout {




Solution

lineItems requires two arguments:

® quantity

® variantId

mutation {
checkoutCreate (input: ({
lineItems: [{

H

DI

checkout {




Update your code

On line 60, we added the quantity argument with a value of 1 which means the default
number of power-ups to buy is 1.
On line 61, we added the variantIdargument with a value of "s {variantId}" which takes

the value we passed to the function on line 55 and puts into in the query variable.

mutation ({
checkoutCreate (input: {
lineItems: [{
quantity: 1,
variantId: "${variantId}"

H

}) |
checkout {




Challenge

The checkout return field (line 62) has no input fields.

We're going to add three. The firstis webUrl.

Look at the checkCompletedPurchases () function at the bottom of queries.js and
compare it to the documentation for checkout to see if you can determine the other two input
fields!

mutation ({
checkoutCreate (input: {
lineItems: [{
quantity: 1,
variantId: "${variantId}"

H

}) |
checkout {




Solution

The three fields are webUr1, completedAt, and id.

DI

checkout {
webUrl

completedAt
id




Let's test the game

e Type [CTRL][C] in the command line to kill the server.

e Typenode server.js to restart the server.

Mac and Windows

$ [CTRL C]

$ node server.js

Listening on Port 5000




MLH & Shopify Present...

Snake 2000

INSTRUCTIONS

Use the arrow keys to change direction.
Press SPACE to start and pause the game.

PRESS [SPACE] TO BEGIN

Score: 0

Game Store

Extra Life
-100pt

4 4




o g A wWwN

Table of contents

. Introduction to APIs and GraphQL

Preview the app

Set up Shopify storefront
Write your own GraphQL calls
Review

Next steps



Let's recap quickly...

GraphQL is a new specification for
interacting with APIs

GraphQL calls fall into two groups - queries
and mutations

GraphQL allows you to request only the
information you need, making it easy to
create a Shopify storefront in your app while

avoiding data overload.

GraphQL



S

Table of contents

. Introduction to APIs and GraphQL

Preview the app

Set up Shopify storefront
Write your own GraphQL calls
Review

Next steps



Keep learning

Practice problems for later

1. Categories

Challenge: Reorganize your products into categories, which will require you
to update the requests you make.

2. Subscriptions

Challenge: Learn about the third type of GraphQL query - a subscription -

and try to recreate the 3rd GraphQL call in queries.js from scratch, with
help from the documentation



Continue your learning

& shopify

Read the GraphQL documentation:
http://graphgl.org/learn/

Read the Shopify Storefront documentation:
https://help.shopify.com/api/storefront-api

Read the Shopify Admin documentation:
https://help.shopify.com/en/api/graphgl-admin-api

Discover other APIs using GraphQL
http://graphgl.org/users/



http://graphql.org/learn/
https://help.shopify.com/api/storefront-api
https://help.shopify.com/en/api/graphql-admin-api

Shopify developer program
) shopify developers

Solve interesting problems for over 600,000 business owners
worldwide

Keep 80% of any app revenue you generate

Refer stores and generate ongoing income

Help build the future of commerce!

http://developers.shopify.com

@ShopifyDevs


http://developers.shopify.com

Have a couple minutes?

Please take this super short survey! Your feedback is a
gift. e

https://bit.ly/madevcon

* T e -
-l o e

http://developers.shopify.com
@ShopifyDevs



http://developers.shopify.com

Thank you! Don't be a
stranger!

And don't forget your socks €

http://developers.shopify.com
@ShopifyDevs

s\ shopify


http://developers.shopify.com

