
Introduction to GraphQL
July 13, 2018
MidDevCon

Baltimore, MD

@ShopifyDevs
http://developers.shopify.com

Welcome! My name is
Evan

Shout out: MLH Localhost

● Special thanks to Major League Hacking, who created these workshop
materials

● Major League Hacking (MLH) powers over 200 weekend-long invention
competitions that inspire innovation, cultivate communities and teach
computer science skills to more than 65,000 students around the world.

● Localhost is their “between hackathon” workshop offering

https://mlh.io/
@MLHacks

What will you learn today?

Why does this matter?

Table of contents
1. Introduction to APIs and GraphQL

Why are APIs important?
Example: Google APIs

●

●

●

●

●

What is REST?
● Representational State

Transfer.

●

●

●

What is GraphQL?
Graph Query Language.

The graph in GraphQL
A partial data graph GraphQL schema

GraphQL execution
A partial data graph Resolver

Benefits of GraphQL
●

●

●

●

GraphQL basics
●

● Query:

● Mutation:

GraphQL query structure
●

●

●

●

01 query {
02 user(id: "abc123") {
03 name
04 email
06 birthday
07 }
08 }

GraphQL response
structure

●

●

01 {
02 "user": {
03 "name": "MidDevCon",
04 "email": "admin@middevcon.com" ,
06 "birthday": "July 13, 2018"
07 }
08 }

GraphQL users

GraphQL at Shopify
●

●

●

●

Table of contents

2. Preview the app

Try the demo application:
https://nl-localhost-shopify.herokuapp.com/

Goal:
Purchase power- in a game using
the Shopify Storefront API

Technologies:
Node.js
JavaScript
HTML / CSS
GraphQL

Step1: install Node

Follow the installation instructions for the type of computer you have at the
following URL:

https://nodejs.org/en/download/

Let me know if you have any trouble!

Step 2: download the
sample code

To get the sample code, enter this URL in your browser:

https://bit.ly/GraphQLIntro

Let me know if you have any trouble!

http://bit.ly/GraphQLIntro

Step 3: unzip files

$ cd ~/Downloads

$ Expand-Archive mlh-localhost-shopify-graphql-master.zip . Windows

Mac

Do not forget
the "." in this
command

$ cd ~/Downloads

$ unzip mlh-localhost-shopify-graphql-master.zip

Step 4: run the Node server

$ cd mlh-localhost-shopify-graphql-master

$ ls

README.md node_modules/ package.json public/ server.js

$ node server.js

Listening on http://localhost:5000/

Mac and Windows

Step 5: navigate to the URL
below

localhost:5000

Notice something missing?

Set up Shopify for development
https://developers.shopify.com

1. Creating a developer account.
2. Creating a development store on your account.
3. Creating an app on your store.
4. Setting up free payments on your store.

http://developers.shopify.com

Register for a Shopify developer
account

https://developers.shopify.com

1. Navigate to the address above.
2. Click "Create account."

http://developers.shopify.com

Register for a Shopify developer
account

3. Enter your name and
email address
4. Choose a password
5. Click “Create account”

Register for a Shopify developer
account

6. Fill in the rest of the
form and click “See
Partner dashboard” at the
bottom.

Register for a Shopify developer
account

7. Click “Development stores.”

Register for a Shopify developer
account

8. Click “Create store”

Register for a Shopify developer
account

9. Give your store a unique name, don’t use “snake game” or anything similar because
the name needs to be unique to your store.

10. Fill in the rest of the form and then click “Save.”

Get credentials
11. On the left side of the home screen, click "Apps".

12. Click "Manage private apps" on the bottom of the next screen.

Get credentials
13. Click “Create a new private app.”

‘

Get credentials
14. Name your private app.

15. Enter an email.
16. Click "Allow this app to access your storefront data using the Storefront API."

17. Click "Save."

Connect your store to application
19. In your preferred text editor, open the project folder you downloaded. In

public/js/queries.js, paste your storefront access token on Line 2.

01 var storeFrontAPI = "https://name-of-your-store.myshopify.com/api/graphql";
02 var storeFrontAccessToken = "12345acbde";

Connect your store to application
20. On Line 1, change the words "name-of-your-store" to the name you gave your
store when you created your account, which can be found in the URL of your Shopify

account homepage.

01 var storeFrontAPI = "https://name-of-your-store.myshopify.com/api/graphql";
02 var storeFrontAccessToken = "12345acbde";

Set up payments
Now that you have connected your store to your application, return to your Storefront

home page in your browser so that you can set up payments.
1. Click "Settings" at the bottom of your screen.

Set up payments
2. Click “Payment providers”

Set up payments
3. Scroll to "Manual payments" and select "Create custom payment method."

Set up payments
4. Give your payment method a name and click "Activate."

Add power-ups to the storefront ˓

Now that you have created your Storefront, we're going to
add the power-ups to the store!

Let us know if you’re still setting up! ✋

Add power-ups to store
1. Return to your account home page on Shopify.
2. On the upper left-hand side of the screen, click "Products."
3. Then, click "Add Product."

Add power-ups to store
4. Name the product "Extra Life."
5. Give the product a simple description, like "Extra Life Power-Up."

Add power-ups to store
6. Upload public/images/storefront-images/extra-life.png image from the
project folder you downloaded.
7. Verify that "Charge taxes on this product" is NOT checked.
8. Verify that "This is a physical product" is NOT checked.

Add power-ups to store
9. At the bottom of the page, click "Edit website SEO."
10. In the URL and handle field, change the name from "extra-life" to
"power-up-1." It must be spelled and formatted exactly like this for the
game to work.

Add power-ups to store
The game we previewed at the beginning of this workshop had four
power-ups. Repeat the process you just completed to add the Speed Boost
Power-Up.

Be sure to:
● Upload the "speed-boost.png" image
● Uncheck "Charge taxes on this product" and "This product requires

shipping"
● Change the website seo to be "power-up-2"

Table of contents

4. Write your own GraphQL calls

What queries do we need?

1. Retrieve the products from your store

2. Create the Checkout

3. Complete the Checkout

Code review: queries.js
queries.js makeRequest

05 function makeRequest(query) {
06 var headers = {
07 "X-Shopify-Storefront-Access-Token": storeFrontAccessToken,
08 "Content-Type": "application/json"
09 };
10
11 return $.ajax({
12 url: storeFrontAPI
13 type: "POST",
14 data: JSON.stringify({ query: query }),
15 headers: headers
16 });
17 }

Write your first GraphQL call
https://help.shopify.com/en/api/custom-storefronts

/storefront-api/graphql-explorer

GraphiQL

Query to fetch products

Query to fetch products

Key term: QueryRoot:

Query to fetch products

Query to fetch products

Query to fetch products

Query to fetch products

you must provide one of first or

last.

Query to fetch products
first last products

first: 2) products

Key term: Argument: Information

passed to a function that is used

by the function to produce the

desired result.

Query to fetch products

Product Connection!

Query to fetch products

ProductEdge! edges

Query to fetch products
edges node

Product! node

Query to fetch products
Question:

Query to fetch products
Answer: images title

Query to fetch products
id

title

Query to fetch products
title, images

Query to fetch products
you must provide one of first or last

images

first: 1 images

Query to fetch products
id

ImageConnection! ImageEdge! Image.

Query to fetch products
id originalSrc URL

id originalSrc

Query to fetch products
variant

src variants(first: 1)

Query to fetch products
queries.js

Write your first GraphQL call:
queries.js

19 // Queries for product information
20 function fetchProducts() {
21 var query = `
22 query {
23 shop {
24 products(first: 4) {
25 edges {
26 node {
27 title
28 images(first: 1) {
29 edges {
30 node {
31 src
32 }
33 }
34 }
35 variants(first: 1) {
36 // Code Continues Below

Let’s test the game

node server.js

$ [CTRL C]

$ node server.js

Listening on Port 5000

Let’s test the game

localhost:5000

What queries do we need?

2. Create the Checkout

Write a mutation: Delete the double slashes / / on lines 53 to 64 in
queries.js

55 // function buyPowerUp(variantId) {
56 // var query = `
57 // mutation {
58 // checkoutCreate(input: {
59 // lineItems: [{
60 //
61 // }]
62 // }) {
63 // checkout {
64 //
65 // }
66 // }
67 // }
68 // `;
69 //
70 // return makeRequest(query);
71 // }

Code review
● buyPowerUp()

variantId

● variantId

● query

55 function buyPowerUp(variantId) {
56 var query = `
57
..
67
68 `;
69
70 return makeRequest(query);
71 }

Code review

55 function buyPowerUp(variantId) {
56 var query = `
57 mutation {
58 checkoutCreate(input: {
59 lineItems: [{
60
61 }]
62 }) {
63 checkout {
64
65 }
66 }
67 }
68 `;
69
70 return makeRequest(query);
71 }

Code review
●

● checkoutCreate()

● checkoutCreate() input

checkout

57 mutation {
58 checkoutCreate(input: {
59 lineItems: [{
60
61 }]
62 }) {
63 checkout {
64
65 }
66 }
67 }

Code review
https://help.shopify.com/api/storefront-api/reference/mutation/checkoutcreate

input

● lineItems

● lineItems

57 mutation {
58 checkoutCreate(input: {
59 lineItems: [{
60
61 }]
62 }) {
63 checkout {
64
65 }
66 }
67 }

Challenge

57 mutation {
58 checkoutCreate(input: {
59 lineItems: [{
60
61 }]
62 }) {
63 checkout {
64
65 }
66 }
67 }

https://help.shopify.com/api/storefront-api/reference/mutation/checkoutcreate

lineItems

Solution

57 mutation {
58 checkoutCreate(input: {
59 lineItems: [{
60
61 }]
62 }) {
63 checkout {
64
65 }
66 }
67 }

lineItems

● quantity

● variantId

Update your code

57 mutation {
58 checkoutCreate(input: {
59 lineItems: [{
60 quantity: 1,
61 variantId: "${variantId}"
62 }]
63 }) {
64 checkout {
65
66 }
67 }
68 }

● On line 60, we added the quantity argument with a value of 1 which means the default

number of power-ups to buy is 1.

● On line 61, we added the variantId argument with a value of "${variantId}" which takes

the value we passed to the function on line 55 and puts into in the query variable.

Challenge

57 mutation {
58 checkoutCreate(input: {
59 lineItems: [{
60 quantity: 1,
61 variantId: "${variantId}"
62 }]
63 }) {
64 checkout {
65
66 }
67 }
68 }

● The checkout return field (line 62) has no input fields.

● We're going to add three. The first is webUrl.

● Look at the checkCompletedPurchases() function at the bottom of queries.js and

compare it to the documentation for checkout to see if you can determine the other two input

fields!

Solution

63 }) {
64 checkout {
65 webUrl
66 completedAt
67 id
68 }
69 }

The three fields are webUrl, completedAt, and id.

Let’s test the game

$ [CTRL C]

$ node server.js

Listening on Port 5000

● Type [CTRL] [C] in the command line to kill the server.

● Type node server.js to restart the server.

Test your game!

Table of contents

5. Review

Let’s recap quickly...

Table of contents

6. Next steps

Keep learning
Practice problems for later

1. Categories
Challenge: Reorganize your products into categories, which will require you
to update the requests you make.

2. Subscriptions
Challenge: Learn about the third type of GraphQL query - a subscription -
and try to recreate the 3rd GraphQL call in queries.js from scratch, with
help from the documentation

Continue your learning

● Read the GraphQL documentation:
http://graphql.org/learn/

● Read the Shopify Storefront documentation:
https://help.shopify.com/api/storefront-api

● Read the Shopify Admin documentation:
https://help.shopify.com/en/api/graphql-admin-api

● Discover other APIs using GraphQL
http://graphql.org/users/

http://graphql.org/learn/
https://help.shopify.com/api/storefront-api
https://help.shopify.com/en/api/graphql-admin-api

Shopify developer program

● Solve interesting problems for over 600,000 business owners
worldwide

● Keep 80% of any app revenue you generate
● Refer stores and generate ongoing income
● Help build the future of commerce!

http://developers.shopify.com
@ShopifyDevs

http://developers.shopify.com

Have a couple minutes?
Please take this super short survey! Your feedback is a

gift. Ʒ

 https://bit.ly/madevcon

http://developers.shopify.com
@ShopifyDevs

http://developers.shopify.com

Thank you! Don’t be a
stranger!

And don’t forget your socks Ǌ

http://developers.shopify.com
@ShopifyDevs

http://developers.shopify.com

