
Complex Concurrency
Patterns in Go
 Evan Huus - Shopify, Inc.

@eapache

Goroutine

Input Output

Goroutine

Goroutine

Goroutine

Goroutine

Goroutine

Goroutine

Goroutine

In Theory

Input Output

In Practice

Input Output

Do I need a mutex here?

In Practice

Yes, Go makes concurrency easier.

Yes, Go makes concurrency easier.

It’s still really hard.

Overview
● A little bit of context
● A lot of case study

Literary Giants

Kafka (https://kafka.apache.org/)

● Java-based Apache project for distributed
publish-subscribe messaging.

● Messages are grouped into topics, topics are
subdivided into partitions, and partitions are
led or replicated by brokers.

● Clients are thick.

https://kafka.apache.org/

Sarama.go (https://github.com/Shopify/sarama)

● Native Golang client for producing and
consuming messages via Kafka.

● Implements wire protocol, producer and
consumer.

● First version was a proof-of-concept, kept it
simple, but...

https://github.com/Shopify/sarama

Knuth

“We should forget about small efficiencies, say
about 97% of the time: premature optimization
is the root of all evil. Yet we should not
pass up our opportunities in that
critical 3%.”

Second Draft Requirements
● Fast
● Configurable
● Resilient
● Correct

Producer
dispatcher

topic producer

partition
producer

topic producer

partition
producer

aggregator

broker producer

aggregator

broker producer

retrier

...

... ...

...

...

Kafka
Cluster

dispatcher

topic producer

partition
producer

topic producer

partition
producer

...

... ...

Resiliency and Isolation

Kafka
Cluster

Resiliency and Isolation
- fan-out (dispatcher)

handlers := make(map[string]chan<- *Message)

for msg := range input {
handler := handlers[msg.Topic]

if handler == nil {
handler = p.newTopicProducer(msg.Topic)
handlers[msg.Topic] = handler

}

handler <- msg
}

Resiliency and Isolation
- circuit-breakers (https://github.com/eapache/go-resiliency)

partitions, err = client.Partitions(msg.Topic)

versus

breaker := breaker.New(3, 1, 10*time.Second)

var partitions []int32
err := breaker.Run(func() (err error) {

partitions, err = client.Partitions(msg.Topic)
return

})

https://github.com/eapache/go-resiliency

Dynamic Multiplexing

Partition
->

Broker

*

1

Dynamic Multiplexing
- global, locked, reference-counted map

Partition
->

Broker

*

1

Dynamic Multiplexing
- acquire-broker

p.brokerLock.Lock()
defer p.brokerLock.Unlock()

bp := p.brokers[broker]
if bp == nil {

bp = p.newBP(broker)
p.brokers[broker] = bp

}
p.brokers[broker].refs++

return bp

- release-broker

p.brokerLock.Lock()
defer p.brokerLock.Unlock()

p.refs[bp]--
if p.refs[bp] == 0 {

close(bp.input)
delete(p.brokers, bp.broker)

}

Batching and I/O

aggregator

broker producerKafka
Cluster

Batching and I/O
- aggregator

for {
select {
case msg := <-input:

req.addMessage(msg)
if req.full() { output = realOutput }

case <-timer:
output = realOutput

case output <- req:
output = nil
req = new(Request)

}
}

Batching and I/O
- buffer-producer

for request := range input {
response, err := broker.Produce(request)

switch err.(type) {
// ...

}

p.handleResponse(response)
}

Try, Try Again

dispatcher
partition
producer

partition
producer...

broker producer broker producer... broker producer broker producer...

Try, Try Again (option #1)
for {

select {
case msg := <-input:

buf = append(buf, msg)
case ack := <-acks:

// ...
}

for partition := range response {
if partition.success {

partition.sendAck()
} else {

partition.sendNack()
}

}

partition
producer

partition
producer...

broker producer broker producer...

Try, Try Again (option #2)
if msg.retries > 0 {

// ...
}

for partition := range response {
if !partition.success {

for msg := range partition {
msg.retries++
dispatcher <- msg

}
}

}

dispatcher

broker producer broker producer...

A

B

Try, Try Again (continued)

Try, Try Again (continued)

A

B

select {
case msg := <-input:

// ...
case output <- msg:

// ...
}

Try, Try Again (continued)

A

B

Try, Try Again (continued)
- if it’s stupid, but it work (https://github.com/eapache/channels/)
for {

if len(buf) == 0 {
msg = <-p.retries

} else {
select {
case msg = <-p.retries:
case p.input <- buf[0]:

buf = buf[1:]
continue

}
}
buf = append(buf, msg)

}

dispatcher

retrier

broker producer broker producer...

https://github.com/eapache/channels/

Putting it all together
dispatcher

topic producer

partition
producer

topic producer

partition
producer

aggregator

broker producer

aggregator

broker producer

retrier

...

... ...

...

...

Kafka
Cluster

Consumer

subscription
manager

broker
consumer

dispatcher

response
feeder

dispatcher

response
feeder

subscription
manager

broker
consumer

...

...

...

...

Kafka
Cluster

Structure Your Goroutines

Anonymous -> Named -> Structured

Structure Your Goroutines

Anonymous

go func() {

// ...

}()

Named

func foo() {

// ...

}

go foo()

Structure Your Goroutines

Structured

type foo struct {

// ...

}

func (f *foo) run() {

// ...

}

func newFoo(...) {

foo := &foo{

// ...

}

go foo.run()

}

Ownership Semantics

dispatcher dispatcher...

...

Ownership Semantics
- dispatcher

trigger := make(chan struct{}, 1)

for _ = range trigger {
broker, err := findNewLeader()
if err != nil {

time.Sleep(...)
trigger <- struct{}{}

} else {
broker.subscribe <- partition

}
}

Ownership Semantics
- broker

for partition, messages, err := range response {
if err != nil {

delete(subscriptions, partition)
partition.trigger <- struct{}{}
continue

}

sendToUser(messages)
}

Isolating I/O (redux)

subscription
manager

broker
consumer Kafka

Cluster

Feeding the User

broker
consumer

response
feeder

response
feeder

broker
consumer

...

... Kafka
Cluster

Feeding the User (response-feeder)
for messages := range input {

for msg := range messages {
select {
case output <- msg:
case <-time.After(timeout):

delete(broker.subscriptions, partition)
broker.acks.Done()
// feed remaining messages
broker.subscribe <- partition
continue outerLoop

}
}
broker.acks.Done()

}

Feeding the User (broker-consumer)

broker.acks.Add(len(subscriptions))

for sub := range subscriptions {
sub.feeder <- response.messages[sub]

}

broker.acks.Wait()

Consumer

subscription
manager

broker
consumer

dispatcher

response
feeder

dispatcher

response
feeder

subscription
manager

broker
consumer

...

...

...

...

Kafka
Cluster

1. Channels are primitives.
2. Structure your goroutines.
3. Don’t trust the network or the user.
4. Infinite buffers smell.
5. Don’t be afraid of locks and “anti-go” tricks.

Lessons Learned

Credits
● Photo of Franz Kafka: public domain (via Wikimedia

Commons).
● Photo of José Saramago: CC-BY 2.0 (from the website of

the Presidencia de la Nación Argentina, via Wikimedia
Commons)

● Photo of Donald Knuth: CC-BY-SA 2.5 (by Jacob
Appelbaum, via Wikimedia Commons)

● Tweet from @caitie: used with permission.

https://twitter.com/caitie

Questions?
@eapache

eapache@gmail.com
https://eapache.github.io

(feedback: https://joind.in/talk/view/14954)

https://twitter.com/eapache
https://twitter.com/eapache
mailto:eapache@gmail.com
mailto:eapache@gmail.com
https://eapache.github.io
https://eapache.github.io
https://joind.in/talk/view/14954

Thanks!
@eapache

eapache@gmail.com
https://eapache.github.io

(feedback: https://joind.in/talk/view/14954)

https://twitter.com/eapache
https://twitter.com/eapache
mailto:eapache@gmail.com
mailto:eapache@gmail.com
https://eapache.github.io
https://eapache.github.io
https://joind.in/talk/view/14954

