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Yes, Go makes concurrency easier.



Yes, Go makes concurrency easier.

It’s still really hard.



Overview
● A little bit of context
● A lot of case study



Literary Giants



Kafka (https://kafka.apache.org/)

● Java-based Apache project for distributed 
publish-subscribe messaging.

● Messages are grouped into topics, topics are 
subdivided into partitions, and partitions are 
led or replicated by brokers.

● Clients are thick.

https://kafka.apache.org/


Sarama.go (https://github.com/Shopify/sarama)

● Native Golang client for producing and 
consuming messages via Kafka.

● Implements wire protocol, producer and 
consumer.

● First version was a proof-of-concept, kept it 
simple, but...

https://github.com/Shopify/sarama


Knuth

“We should forget about small efficiencies, say 
about 97% of the time: premature optimization 
is the root of all evil. Yet we should not 
pass up our opportunities in that 
critical 3%.”



Second Draft Requirements
● Fast
● Configurable
● Resilient
● Correct
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Resiliency and Isolation
- fan-out (dispatcher)

handlers := make(map[string]chan<- *Message)

for msg := range input {
handler := handlers[msg.Topic]

if handler == nil {
handler = p.newTopicProducer(msg.Topic)
handlers[msg.Topic] = handler

}

handler <- msg
}



Resiliency and Isolation
- circuit-breakers (https://github.com/eapache/go-resiliency)

partitions, err = client.Partitions(msg.Topic)

versus

breaker := breaker.New(3, 1, 10*time.Second)

var partitions []int32
err := breaker.Run(func() (err error) {

partitions, err = client.Partitions(msg.Topic)
return

})

https://github.com/eapache/go-resiliency
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Dynamic Multiplexing
- global, locked, reference-counted map
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Dynamic Multiplexing
- acquire-broker

p.brokerLock.Lock()
defer p.brokerLock.Unlock()

bp := p.brokers[broker]
if bp == nil {

bp = p.newBP(broker)
p.brokers[broker] = bp

}
p.brokers[broker].refs++

return bp

- release-broker

p.brokerLock.Lock()
defer p.brokerLock.Unlock()

p.refs[bp]--
if p.refs[bp] == 0 {

close(bp.input)
delete(p.brokers, bp.broker)

}
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Batching and I/O
- aggregator

for {
select {
case msg := <-input:

req.addMessage(msg)
if req.full() { output = realOutput }

case <-timer:
output = realOutput

case output <- req:
output = nil
req = new(Request)

}
}



Batching and I/O
- buffer-producer

for request := range input {
response, err := broker.Produce(request)

switch err.(type) {
// ...

}

p.handleResponse(response)
}
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Try, Try Again (option #1)
for {

select {
case msg := <-input:

buf = append(buf, msg)
case ack := <-acks:

// ...
}

for partition := range response {
if partition.success {

partition.sendAck()
} else {

partition.sendNack()
}

}

partition 
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Try, Try Again (option #2)
if msg.retries > 0 {

// ...
}

for partition := range response {
if !partition.success {

for msg := range partition {
msg.retries++
dispatcher <- msg

}
}

}

dispatcher

broker producer broker producer...
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Try, Try Again (continued)
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select {
case msg := <-input:

// ...
case output <- msg:

// ...
}



Try, Try Again (continued)
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Try, Try Again (continued)
- if it’s stupid, but it work (https://github.com/eapache/channels/)
for {

if len(buf) == 0 {
msg = <-p.retries

} else {
select {
case msg = <-p.retries:
case p.input <- buf[0]:

buf = buf[1:]
continue

}
}
buf = append(buf, msg)

}

dispatcher

retrier

broker producer broker producer...

https://github.com/eapache/channels/
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Structure Your Goroutines

Anonymous -> Named -> Structured



Structure Your Goroutines

Anonymous

go func() {

// ...

}()

Named

func foo() {

// ...

}

go foo()



Structure Your Goroutines

Structured

type foo struct {

// ...

}

func (f *foo) run() {

// ...

}

func newFoo(...) {

foo := &foo{

// ...

}

go foo.run()

}



Ownership Semantics
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Ownership Semantics
- dispatcher

trigger := make(chan struct{}, 1)

for _ = range trigger {
broker, err := findNewLeader()
if err != nil {

time.Sleep(...)
trigger <- struct{}{}

} else {
broker.subscribe <- partition

}
}



Ownership Semantics
- broker

for partition, messages, err := range response {
if err != nil {

delete(subscriptions, partition)
partition.trigger <- struct{}{}
continue

}

sendToUser(messages)
}



Isolating I/O (redux)
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Feeding the User
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Feeding the User (response-feeder)
for messages := range input {

for msg := range messages {
select {
case output <- msg:
case <-time.After(timeout):

delete(broker.subscriptions, partition)
broker.acks.Done()
// feed remaining messages
broker.subscribe <- partition
continue outerLoop

}
}
broker.acks.Done()

}



Feeding the User (broker-consumer)

broker.acks.Add(len(subscriptions))

for sub := range subscriptions {
sub.feeder <- response.messages[sub]

}

broker.acks.Wait()
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1. Channels are primitives.
2. Structure your goroutines.
3. Don’t trust the network or the user.
4. Infinite buffers smell.
5. Don’t be afraid of locks and “anti-go” tricks.

Lessons Learned
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