
Ecological Interface Design: Practical

Applications to the Wireshark Network Analyzer

Evan Huus (Carleton University)
eapache@gmail.com

December 8, 2013

Abstract

The open-source Wireshark application is over fifteen years old and is
widely hailed as the gold standard in network protocol analysis. Wire-
shark’s user interface is in the process of being rewritten from scratch
for both technical and usability reasons, making it an ideal candidate
for research in human-computer interaction (HCI). This paper investi-
gates practical applications of the Ecological Interface Design framework
to Wireshark’s design. We define the problem space, develop the nec-
essary structures using Ecological Interface Design, then evaluate both
the old and new versions of Wireshark’s interface using those structures.
Finally, we use the evaluation to provide concrete recommendations for
future Wireshark development.

1 Introduction

1.1 Wireshark

The open-source Wireshark application1 bills itself as “the world’s fore-
most network protocol analyzer”. It provides users with the ability to
see and inspect the packets flowing through modern computer networks,
supporting many hundreds of different network protocols. It is a mature,
feature-rich project with over fifteen years of history as of July 20132.

In this time frame, Wireshark’s graphical user interface design has
not changed in any substantial way. It uses the same three-panel design
used in many other network “sniffer” and protocol analyzer applications,
a design dating back at least to 19893. This layout consists of three
vertically-stacked panes: the topmost pane contains a list of packets with
basic summary information for each one, the middle pane contains proto-
col details for whichever packet is selected from the list, and the bottom
pane displays the raw bytes of the selected packet.

1https://www.wireshark.org
2https://blog.wireshark.org/2013/07/fifteen-years/
3Laura Chappell, personal communication, November 3, 2013.

1

mailto:eapache@gmail.com
https://www.wireshark.org
https://blog.wireshark.org/2013/07/fifteen-years/


While this interface has served Wireshark well, it has begun to show
its age. Additionally, the library originally used to write Wireshark’s UI
does not support several platforms which Wireshark wishes to support.
In light of these factors, it was recently decided to rewrite Wireshark’s
GUI module from scratch using a new library4. Wireshark’s long history
and current rewrite make it an excellent subject on which to apply some
modern theories in HCI.

1.2 Ecological Interface Design

In 1992, Vicente and Rasmussen proposed “a novel theoretical framework
for interface design for complex human-machine systems” [6] and called
it Ecological Interface Design (EID). Initially developed as an attempt
to bring the powers of direct manipulation interfaces to new problem do-
mains, EID became a fully-fledged framework in its own right and has been
shown to have a number of practical applications [1, 2, 3, 4]. EID brings
two distinct structures to bear on any given problem: the abstraction
hierarchy, and the skills, rules, knowledge taxonomy. When combined,
these structures provide substantial insight into interface design.

1.2.1 The Abstraction Hierarchy

The abstraction hierarchy in EID is a set of layers, each dealing with the
same underlying system at a different level of detail and control. Hierar-
chies are a common theme in HCI already, but the abstraction hierarchy is
distinguished by having, according to Vicente and Rasmussen, an “explic-
itly goal-oriented nature” [6]. Other hierarchies may be oriented around
physical or temporal scale, or the flow of a particular resource (often in-
formation), but the abstraction hierarchy is oriented around ends, and
the means of achieving those ends, bringing it in close synchronicity with
users’ real-world problem-solving patterns.

It is worth noting that the abstraction hierarchy is not a single spe-
cific hierarchy but a class of hierarchies fitting this general pattern. Each
problem-space to which EID is applied must develop its own hierarchy
specific to that problem, with its own layers and abstractions. There is a
great deal of literature suggesting that users automatically develop their
own abstraction hierarchies when problem-solving within a domain (sev-
eral examples are cited in [6]), so EID recommends that system interfaces
should generally be structured in the same way. This provides a natural
mapping between the interface and the user’s mental model.

1.2.2 Skills, Rules, Knowledge

The second structure used by EID is the taxonomy of skills, rules and
knowledge, often abbreviated as SRK. First developed by Rasmussen in
an earlier paper [5], the SRK taxonomy is concerned primarily with the
three ways in which people process and react to information.

4https://blog.wireshark.org/2013/10/switching-to-qt/

2

https://blog.wireshark.org/2013/10/switching-to-qt/


At the lowest cognitive level, skill-based behaviour consists of the
nearly subconscious actions and muscle memory that make up many ac-
quired skills. This behaviour is often very efficient as it requires almost
no cognitive resources, but it can only deal with known, regular tasks.
Rule-based behaviour sits one level up, consisting of known mappings be-
tween particular inputs and responses. It is slightly less efficient since
the mapping requires some cognition, but it can deal with situations that
are uncommon enough to have no skill-based behaviours, although it still
cannot deal with situations that are entirely unforeseen. Knowledge-based
behaviour is the higher-level, conscious problem-solving behaviour that we
engage in when presented with unfamiliar scenarios. It is inefficient and
relatively error-prone compared to the lower levels, but it allows us to deal
theoretically with any potential problem-space.

Based on this taxonomy, EID suggests that interfaces should let users
act at the lower, more efficient levels as much as possible. However, it ex-
plicitly notes that knowledge-based behaviour is sometimes unavoidable,
and that interfaces should therefore still provide substantial support for
that level of behaviour.

1.3 EID and Wireshark

In order to apply Ecological Interface Design to any application, we must
first clarify the problem space and use cases targeted by that application.
In broadest terms, Wireshark’s goal is simply that of “helping the user
to get information about their network”. This is clearly far too broad
to be useful, although it does provide a convenient umbrella under which
Wireshark has several more specific use cases:

Exploring Wireshark is frequently used as an exploratory learning tool,
allowing users to discover and watch the behaviour of networked
systems in real time.

Auditing Wireshark can be used by auditors to inspect network traffic
in order to ensure that protocol standards are being respected and
to verify the absence of malicious traffic.

Monitoring Wireshark is also occasionally useful as a tool for monitoring
specific sections of a network in order to locate problems or verify
their resolution.

Debugging In perhaps its most common use, Wireshark permits users
to debug networked applications and protocols by inspecting the
specific structure of packets in network traffic.

While these four uses are distinct, it is notable that all but the first are
concerned with network errors in one form or another. We shall therefore
focus our attention on this dimension of Wireshark usage: the detection,
identification and analysis of errors in a network. Importantly, we worry
only about errors at the software level; unplugged network cables and
other hardware issues are outside the scope of this problem space.

To provide a motivating example, consider a network engineer who has
noticed unusual behaviour in certain connections to her web server. She
uses Wireshark to audit the network traffic and notices some problematic

3



packets. She then uses Wireshark to inspect the contents of those packets
and debug the problem. Having resolved the root cause on the web server,
the engineer now uses Wireshark to monitor the network traffic and verify
that the problem has actually been fixed.

2 Applications to Packet Analysis

With our problem space now clearly defined we can use it to explore ap-
plications of EID. In this section we consider several possible abstraction
hierarchies for the domain. We then apply the skills, rules and knowl-
edge taxonomy to the various forms of cognition that a user may have
to perform during the problem-solving process. Along the way, we locate
practical applications of these principles and use them to sketch compo-
nents of a potential interface design.

2.1 Abstraction Hierarchies

2.1.1 Protocol-Based Hierarchy

Within the realm of packet analysis, several hierarchies already exist which
might be drawn on to construct an abstraction hierarchy. One such hier-
archy is the OSI model (ISO/IEC 7498-1), which breaks network commu-
nications down into seven layers. The bottom-most layer, officially called
the physical layer, is not one that packet analysis tools usually have access
to, but the remaining six layers might be used to derive an abstraction
hierarchy.

In this hierarchy the highest level of abstraction is the application
layer, where userspace applications can communicate over protocols like
HTTP without worrying about lower-level details. Below this is the
mostly-unused presentation layer, and below that is the session layer where
protocols such as RTP handle the establishment and negotiation of com-
munication sessions. Protocols like TCP and UDP are another level down
at the transport layer, and protocols like IP are even further down at
the network layer. The bottom-most relevant layer would be the data
link layer, which is the realm of the Ethernet framing protocol and other
details.

This hierarchy is well-established and seems like it might be a natural
fit, but it has several problems that make it less than ideal. One issue
is that particular layers may be missing or over-represented in specific
packets. This can occur when HTTP is carried directly over TCP for
example, skipping two layers of the hierarchy. Alternatively it is common
for IPv6 to be tunnelled over IPv4 for compatibility reasons, effectively
duplicating the network layer.

A more serious concern with this model is that it seems somehow back-
wards when compared to how our hypothetical network engineer would
actually approach her problem. If she wanted to narrow her search (or
“zoom in” to use the terminology of Vicente and Rasmussen) to just a
particular machine and then to just a particular stream of HTTP traffic
on that machine, she would have to access the layers of this hierarchy

4



in reverse: different machines are distinguished at the low-level data-link
and network layers, while traffic streams are distinguished at the mid-
level transport layer. The actual HTTP traffic however, is located at the
application layer.

2.1.2 Traffic-Based Hierarchy

While evaluating the previous attempt at a protocol-based abstraction
hierarchy, the shape of another potential hierarchy revealed itself. This
hierarchy, based more on the flow of information than on specific protocol
structures, uses a byte of data “on the wire” as its atomic unit. Bytes can
be grouped together to form packets of related data, providing our first
layer of abstraction.

Subsequent layers of abstraction can be effectively generated by group-
ing elements of the previous layer together. Related packets can be
grouped by request/response pairs, for example, or according to which web
resource they were involved in accessing. These simple groups form what
I will call conversations. Conversations can be further grouped and ab-
stracted into sessions, collecting perhaps the numerous conversations that
occur as a user browses through a website. These sessions may themselves
be aggregated based on which machine(s) on the network were involved.

This abstraction hierarchy seems initially more useful to our fictitious
network engineer. She already knows which sessions and machines are dis-
playing the problematic behaviour, so this hierarchy more closely matches
her mental model as she zooms in to focus on just the relevant packets.
However she now hits a snag. This hierarchy says nothing about the pro-
tocols or their relations, leaving her unable to zoom in any farther. If the
problem is in the HTTP protocol, she must now wade through a mass
of unnecessary detail in the Ethernet, IP and TCP protocols in order to
determine the actual error.

2.1.3 Combined Hierarchy

We have now considered two possible hierarchies, but both of them had
non-trivial problems when viewed from the perspective of the network en-
gineer. The traffic-based hierarchy provided excellent support for zooming
in to just the relevant packets, but left the actual protocol layers undif-
ferentiated. The protocol-based hierarchy did a decent job of abstracting
the protocols, but provided no way to focus on only the relevant pack-
ets. In this way, it seems like the two hierarchies are actually somehow
complementary.

Based on this appearance, we have developed a third potential abstrac-
tion hierarchy, built by combining simplified versions of the two previous
attempts into a single structure. Starting at the most abstract this hierar-
chy moves from endpoints to conversations to packets, and then through
a subset of the OSI model: the application layer, the transport layer,
the network layer and the data link layer. When more than four proto-
cols appear in a packet, as in the IPv6 tunnelling case, they are grouped
appropriately.5

5In our example of IPv6 tunnelled over IPv4, both would appear at the network layer.

5



This combined hierarchy seems to do the job. Our network engineer
will start her problem-solving process by selecting the endpoint and con-
versations of interest, presenting her with only the relevant packets. She
then inspects the application-layer protocol for errors. If she cannot lo-
cate or identify the error there, she peels back another layer to view the
transport protocol(s) and resumes her search.

2.2 The SRK Taxonomy

The skills, rules and knowledge taxonomy is the other primary compo-
nent of EID. The applications of this taxonomy to the packet analysis
domain are not immediately obvious, but we can gain some useful in-
sights nonetheless. The primary problem in applying this taxonomy to
packet analysis applications is that they provide what is effectively a read-
only interface: the processes actually generating the traffic are far outside
of the analyzer’s control, so there is no way for the analyzer to manipulate
the traffic being sent. As such, there is no way for it to provide a display
structure isomorphic to the system’s control structure.

Despite this problem, we can still take advantage of the SRK tax-
onomy. In particular, the user must still interact with the application’s
interface to navigate the abstraction hierarchy and control what informa-
tion is displayed. According to Vicente and Rasmussen, any information
given to the user “can be interpreted in three mutually exclusive ways —
as signals, signs, or symbols” [6]. Each of these ways triggers its respective
behaviour in the SRK taxonomy.

2.2.1 Signals and Navigation

We focus first on signals triggering skill-based behaviour, and their ap-
plications to navigation. Rasmussen wrote in 1983 that “in general, the
skill-based performance rolls along without the person’s conscious atten-
tion, and he will be unable to describe how he controls and on what
information he bases the performance” [5]. We can infer from this that
an interface containing good navigational signals will allow the user to
navigate nearly subconsciously.

Consider the abstraction hierarchy from the previous section. As in
most abstraction hierarchies, the primary navigational direction will prob-
ably be “down”, to reveal the next layer of detail. However, moving up the
hierarchy may also occur if the user travels too far and realizes that the
information they need is more clearly presented at a higher level. Move-
ment in other directions may also be convenient if, for example, one is
tracing an event from machine to machine in the network. In this case it
may be very useful to stay at the application level of the hierarchy, but
jump sideways from host to host.

At the traffic-based levels of the hierarchy, the layers have a container-
contained relationship, where for example one endpoint may be involved
in many conversations. One way to match the user’s mental model in this
case might be to display a spatial “map” of the elements at the current
layer, with a brief summary next to each one. Selecting an element could
zoom in to the set of sub-elements it contains.

6



At the protocol-based levels of the hierarchy things are somewhat more
complicated. Many protocols such as TCP permit payloads to be spread
arbitrarily across actual packet boundaries, meaning that there may be
no consistent relationship between the apparent “packets” at two different
layers. A better choice for this level might be a stack-like structure similar
to that commonly used for software architecture diagrams6, such that
higher-level packets are shown on top of the lower-level packets from which
they are derived.

2.2.2 Signs and Errors

While skill-based behaviour seems primarily useful during navigation,
signs and rule-based behaviours are more directly applicable to the prob-
lem of error detection. Many if not all of the anomalies a user might want
to detect can be precomputed by the analyzer software without human
assistance. For example, the TCP protocol header contains a checksum
field which is relatively straightforward to verify once located. The ap-
plication’s job in this case is to “provide a consistent one-to-one mapping
between the work domain constraints and the cues or signs provided by
the interface” [6].

The obvious first step is to visibly flag detected errors in a way that
draws the user’s attention to anomalous packets, but an application should
do more. Different errors can have different levels of importance which
should be distinguishable: critical errors should stand out even amidst a
sea of lesser issues. It is also important to aggregate errors at different
levels of the hierarchy. While TCP checksum errors must obviously be
visible at the TCP level, the display of endpoints should presumably still
flag an endpoint that is experiencing many such errors.

This display logic becomes more complex when errors exist at multiple
levels. If there is an error in the current application-level packet, for
example, but also in the underlying transport-level packet, then both
should be flagged. The application-level error must be more obvious as
that is the layer currently in focus, but the transport-level error must also
be visible as it may in fact be the cause of the higher-level error. The
display of errors with different severities at different levels of abstraction
requires a careful balancing act.

2.2.3 Symbols and Decoding

The final prong of the SRK taxonomy is the use of symbols and knowledge-
based behaviour. People use knowledge-based behaviour when they en-
counter a situation that is both unfamiliar to them and unanticipated
by the application. In packet analysis these scenarios generally take one
of two forms: an unanticipated error in a known protocol or an entirely
unknown protocol. While the application should attempt to minimize
occurrences of either situation, it should still support the user in both.

6See for example the following diagram of open-source display and UI toolkits:
http://en.wikipedia.org/wiki/File:Free_and_open-source-software_display_servers_

and_UI_toolkits.svg

7

http://en.wikipedia.org/wiki/File:Free_and_open-source-software_display_servers_and_UI_toolkits.svg
http://en.wikipedia.org/wiki/File:Free_and_open-source-software_display_servers_and_UI_toolkits.svg


In the case of an unanticipated error condition, the violated constraints
can usually be described by relations between various protocol fields in
one or more packets. For example, the TCP checksum field is defined to
be the 16-bit checksum of the remaining packet bytes7; the relationship
between these two components is a constraint on both, and any violation
of that constraint is considered an error. To aid the user in locating and
calculating these violations, the application should therefore permit the
user to compare, list and operate on field values as flexibly as possible,
both within and between packets.

In addition to allowing the user to identify these violations, the ap-
plication should also allow the user to easily locate other instances of
the same type of error. This may not always be possible if, to continue
our previous example, the application is unable to calculate checksums at
all, but in simpler cases the user should be able to formally describe the
constraint violation and have the application do the heavy lifting. These
additional constraints should be persistent, so that in subsequent sessions
the user does not have to remember or re-enter them.

In the case of entirely unknown protocols, the only data that the user
has to work with are the raw bytes of the packet and often some external
protocol specification. In this case the application should allow the user
to add meaning to the bytes by interpreting and labelling them. The user
should be able to easily apply these structures across multiple unknown
packets, and should be able to operate on them with the same tools used
for working with built-in protocols.

3 Evaluating Wireshark

In the previous section we explored and developed many design principles
and structures related to the general problem of packet analysis, with
a particular focus on detecting, identifying and analyzing errors. In this
section, we extract and summarize a set of domain-specific design criteria.
We then use these criteria to evaluate both the old and new versions of
Wireshark’s user interface and to provide recommendations.

Every effort was made to minimize unnecessary differences between the
two versions; both were built and tested on the same machine with the
same set of packets and default settings. The “old” version was built from
revision 53547 of the trunk-1.10 branch using the GTK-based interface,
while the “new” version was built from revision 53607 of the trunk branch
using the Qt-based interface. Both revisions were the most recent available
as of the time of writing. It is worth noting that the Qt-based interface
was not entirely complete at this point — all core functionality had been
implemented, but it was far from a finished product.

3.1 Evaluation Criteria

The following evaluation criteria have been extracted and summarized
from the previous sections for simplicity’s sake:

7The actual checksum algorithm is rather unusual and somewhat more complicated as it
involves calculating an extra pseudo-header. For a full specification see IETF RFC 793.

8



1. The interface should have a clear abstraction hierarchy, supporting
endpoints, conversations, packets, and the different protocol layers.

2. The interface should permit easy navigation between the layers of
abstraction, and make obvious the relationships between the differ-
ent layers. If the user’s focus is on a particular layer, the other layers
should not get in the way.

3. The interface should visibly flag errors, differentiate between errors
with varying levels of importance, and summarize errors appropri-
ately at different layers of the abstraction hierarchy.

4. The interface should allow the user to compare, list and operate on
protocol fields within and between packets. It should allow the user
to describe and mark constraint violations, and should persist these
descriptions across sessions.

5. The interface should allow the user to interpret and label bytes of un-
known protocols, reuse these interpretations across multiple packets
and sessions, and operate on them as if they were built-in.

3.2 Old Interface

3.2.1 Primary Window

The primary window for Wireshark’s old interface (Figure 1) follows the
traditional three-panel layout with the addition of a display filter toolbar.
Each of these four elements has been highlighted and numbered in red.

The display filter (element 1) is a powerful feature that allows users to
combine comparison operators, protocol fields and Boolean logic to display
specific subsets of packets. For example, a user could enter (ip.src ==

192.168.1.101 and http) and Wireshark would display only the HTTP
packets being sent by that particular IP address8. Frequently used filters
can be saved by the user so they persist across multiple sessions. However,
while the display filter fulfils a good part of criterion #4, it does not
support multi-packet filters and lacks operators for calculating (as opposed
to simply comparing) packet fields.

The second component of Wireshark’s interface is the packet list (ele-
ment 2). It lists the subset of packets matching the current display filter, if
any. For each packet, a number of columns display summary information,
and the packet’s row is coloured according to certain rules. The packet list
is extremely flexible: users can configure custom columns and colouring
rules using the same syntax as the display filter9. This flexibility allows
the packet list to satisfy parts of criteria #3 and #4; with the appropriate
colouring rules, problematic packets will stand out in the list, and custom
columns allow the user to perform basic multi-packet comparisons. One
limitation of the protocol list is that it always displays exactly one row per
packet of data “on the wire”. If, for example, a packet contains multiple

8See www.wireshark.org/docs/man-pages/wireshark-filter.html for a complete descrip-
tion of display filter syntax.

9See www.wireshark.org/docs/wsug_html_chunked/ChCustColorizationSection.html for
a description of how to set up custom colouring rules.

9

www.wireshark.org/docs/man-pages/wireshark-filter.html
www.wireshark.org/docs/wsug_html_chunked/ChCustColorizationSection.html


Figure 1: The GTK-based user interface of Wireshark 1.10.

HTTP requests, then there is no way to have each request displayed on
its own row.

Below the packet list are the two packet-specific parts of Wireshark’s
interface: the protocol tree (element 3) and the byte pane (element 4).
The protocol tree contains a list of every protocol, field and interpreted
value detected in the currently-selected packet, in the form of an expand-
able tree. The bytes pane simply lists the raw bytes of the current packet
in several formats. The two elements are linked: selecting a field in the
tree highlights the bytes representing that field in the packet, and clicking
on a byte in the packet automatically focuses the relevant field in the tree.

The tree provides a relatively clean view of the protocol-based levels of
the abstraction hierarchy, however it suffers from the same limitation as
the protocol list: there is no way to hide lower-level framing or separate
cohabitating higher-level payloads. Despite this problem, it is substan-
tially more flexible than the pure abstraction hierarchy with respect to
nested and tunnelled protocols, and partly satisfies criteria #1 and #2.

3.2.2 Other Elements

The traffic-based levels of the abstraction hierarchy can be found amongst
the plethora of additional windows accessible via Wireshark’s menus.
These windows include one providing a list of identified network end-
points and another providing a list of identified conversations; both win-
dows will automatically generate display filters for focusing on the relevant

10



packets. While this partly satisfy criterion #1, it utterly fails to satisfy
criterion #2: the relationships between the levels are not apparent, and
the windows are difficult to discover and navigate.

Another of these extra windows provides a comprehensive list of Wire-
shark’s calculated “expert information” for the current packets. This in-
formation consists of all interesting or problematic events identified in
each packet, grouped together by type and severity. These can include
everything from error-level TCP checksum mismatches to chat-level events
indicating the normal closing of a connection.

Wireshark’s expert information appears in many other elements of the
interface as well, comprehensively satisfying criterion #3. In the very
bottom-left corner of Figure 1, the yellow circle indicates that “Warning”
is the most severe level found in the current set of packets. The filter
engine also supports expert information, providing three special fields
(expert.group, expert.message and expert.severity) for use in dis-
play filters, columns and colouring rules. In the protocol tree, expert
information shows up as a special generated field, coloured according to
its severity.

The only place where Wireshark falls entirely flat is on criterion #5.
The interface provides no way to interpret, label or group the unknown
bytes of a packet, making it very difficult to use when a protocol is not
supported. Currently the only way to add new protocols to Wireshark
is to write code in C or Lua, which requires a great deal of additional
knowledge on the part of the user. Fortunately, Wireshark supports over
1000 protocols in its latest release, so hopefully the number of missing
protocols is low.

3.3 New Interface

Wireshark’s new, Qt-based interface (Figure 2) has a core layout which is
clearly derived from the old GTK-based interface. It also inherits much of
the old interface’s behaviour, as the underlying engine has received only
incremental improvements between the two versions. However, there are
still several differences which promise improved usability.

The first and most obvious change is that packet conversations are
now visibly grouped in the packet list (see label 1 in Figure 2). This
is quite difficult to see due to its small size and poor contrast, but the
left-most column of the list now displays a bracket indicating which other
packets are in the current conversation. If the currently selected packet
includes links to other packets — for example the response corresponding
to the current request — then those rows are marked with an additional
dot. Unfortunately these interface elements are not currently interactive;
if the user wishes to focus on a particular conversation they must filter it
out some other way.

Another change, albeit not a visible one, is that individual expert in-
formation items can now be used as fully-fledged filterable fields in display
filters, custom columns and colouring rules. In the previous version, the
only expert-related filters were the three special ones, thus requiring the
user to write regular expressions on the expert.message field to filter out
specific errors. In this version, each individual error type is filterable, al-

11



Figure 2: The Qt-based user interface of Wireshark under development.

lowing the user to filter directly on fields like tcp.analysis.out of order,
for example10. Although technically an engine improvement and not an
interface change per se, it substantially improves Wireshark’s conformance
to criteria #3 and #4.

The final apparent change in the new interface is technically more of
an absence; many of the additional windows present in the old interface
are currently unimplemented, including the list of endpoints, the list of
conversations, and the list of expert information. This may just be a result
of the new interface’s incomplete status, but it means that there is sub-
stantial room to rethink the layout of these functions before implementing
them in the new interface, particularly with respect to criterion #2.

3.4 Recommendations

Having evaluated Wireshark’s two interfaces according a set of specific
design criteria, we are now in a position to make several concrete recom-
mendations for future Wireshark development.

The only criterion fundamentally unfulfilled by the interface was the
fifth, dealing with unknown protocols, however this may not be as large
a problem as it appears. Wireshark does provide the opportunity to code

10Certain protocol dissectors used to generate extra “fields” just to permit filtering on
common expert information, so you could technically filter on tcp.analysis.out of order in
the old interface, but it required additional work and an extra layer of indirection.

12



protocol plugins in two languages, and while this is not something we can
reasonably expect from the average layperson, Wireshark’s target user-
base is substantially more technically savvy. Nevertheless, it would be
highly beneficial if Wireshark provided basic functionality for interpreting
and labelling unknown bytes.

In contrast, the fourth criterion was much better satisfied, however
there is always room for improvement. Wireshark’s filter engine would
be much more useful if it supported comparisons across multiple packets,
as it is currently very difficult to locate inter-packet constraint violations
if they are not already marked with expert information. Additionally, it
may be useful to permit basic operations for calculating new values out
of the existing fields.

The third criterion was the most completely covered in both versions,
and yet there was a peculiar lack of useful defaults. While the expert
information framework was well-integrated and could be used in both
columns and colouring rules, neither took advantage of it. The default
columns relied on the protocol to add the appropriate summary informa-
tion, a hit-and-miss situation at best, while the default colouring rules
cherry-picked certain common errors instead of using more general filters.
At the very least there should be a colouring rule to highlight packets that
match expert.severity == "Error".

The first two criteria dealt with the implementation and navigation
of the abstraction hierarchy. While this was a more complex area to
evaluate, two things stand out. First, the packet list and protocol tree
should be capable of focusing on higher levels of abstraction instead of
always being stuck at the lowest level of on-the-wire packet. Second,
whatever design ends up being used to implement the conversation and
endpoint functionality in the new interface should make every effort to
provide a more unified hierarchy and a more discoverable and navigable
interface.

The above recommendations range broadly in specificity and scope.
Not all of these are easy, and some may be entirely unfeasible, but all of
them would, in principle, contribute to Wireshark’s usability according to
Ecological Interface Design.

4 Conclusion

Ecological Interface Design was originally created and used for the inter-
faces of complex industrial systems like nuclear power plants [6], however
we have shown in this paper that its underlying principles have applica-
tions to more traditional software interfaces as well. We have used these
principles to develop structures for evaluating packet analysis software,
and have analyzed two versions of the Wireshark application’s user inter-
face. In addition, we have been able to make concrete recommendations
for future Wireshark interface development.

There are many opportunities for future work in this area. Mak-
ing predictions is one thing, but testing them is quite another: future
work could involve implementing and empirically evaluating some of the
changes suggested in this paper. If this proves successful, there are many

13



other applications in various fields that might benefit from the EID ap-
proach. Additionally, there are several commercial applications targeting
the same problem domain; evaluating them according to the criteria de-
veloped in this paper and comparing them to Wireshark would be a useful
exercise.

Acknowledgements

Many thanks are due to Laura Chappell, Betty DuBois and Guy Harris
who provided me with first-hand accounts of historical network sniffer
and analysis tools. Thanks are also due to Wireshark developer Chris
Maynard, who reviewed this paper and pointed out several mistakes with
respect to Wireshark’s design and behaviour. Any remaining inaccuracies
are entirely my own. Finally, I wish to thank Dr. Robert Biddle who
taught the course for which this paper was written.

References

[1] C. Borst, H. C. H. Suijkerbuijk, M. Mulder, and M. M. Van Paassen.
Ecological interface design for terrain awareness. The International
Journal of Aviation Psychology, 16(4):375–400, 2006.

[2] N. Dinadis and K.J. Vicente. Ecological interface design for a power
plant feedwater subsystem. IEEE Transactions on Nuclear Science,
43(1):266–277, 1996.

[3] Pierre Duez and Kim J. Vicente. Ecological interface design and com-
puter network management: The effects of network size and fault fre-
quency. International Journal of Human-Computer Studies, 63:569–
586, 2005.

[4] G.A. Jamieson, C.A. Miller, W.H. Ho, and K.J. Vicente. Integrating
task- and work domain-based work analyses in ecological interface
design: A process control case study. IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans, 37(6):887–905,
2007.

[5] Jens Rasmussen. Skills, rules, and knowledge; signals, signs, and sym-
bols, and other distinctions in human performance models. IEEE
Transactions on Systems, Man, and Cybernetics, 13(3):257–266, 1983.

[6] Kim J. Vicente and Jens Rasmussen. Ecological interface design: The-
oretical foundations. IEEE Transactions on Systems, Man, and Cy-
bernetics, 22(4):589–606, 1992.

14


	Introduction
	Wireshark
	Ecological Interface Design
	The Abstraction Hierarchy
	Skills, Rules, Knowledge

	EID and Wireshark

	Applications to Packet Analysis
	Abstraction Hierarchies
	Protocol-Based Hierarchy
	Traffic-Based Hierarchy
	Combined Hierarchy

	The SRK Taxonomy
	Signals and Navigation
	Signs and Errors
	Symbols and Decoding


	Evaluating Wireshark
	Evaluation Criteria
	Old Interface
	Primary Window
	Other Elements

	New Interface
	Recommendations

	Conclusion

