
Reduced Restructuring in Splay Trees

Evan Huus (Carleton University)
eapache@gmail.com

April 15, 2014

Abstract

In 1985, Daniel Sleator and Robert Tarjan published what has be-
come a seminal paper in computer science, introducing the world to “splay
trees” [11]. While splay trees have a number of excellent properties, sev-
eral of which were proved in the original paper, they have tended to be less
useful in practice due to the large amount of restructuring they must do
on each operation. In this paper we investigate the various directions that
have been studied over the last 29 years in order to reduce the amount of
restructuring done by splay trees.

1 Introduction

In 1985, Daniel Sleator and Robert Tarjan invented the “splay tree”, a clever
scheme for restructuring binary search trees on the fly to maintain a number
of powerful properties. In that paper alone they proved that splay trees are as
good as the statically optimal tree for any sufficiently long sequence of accesses,
that splay trees have the working-set property, and that splay trees have the
static finger property for any fixed item f . Later papers by other authors have
only added to the near-magical powers of splay trees; for example, Cole proved
in 2001 that splay trees also have the dynamic finger property (see [4] and its
companion paper [5]).

There are also a number of open conjectures on the splay tree which, if
proven, would further strengthen its theoretical performance. In their original
paper, Sleator and Tarjan conjectured that splay trees were not just as good
as any statically optimal tree, but were in fact as good as any dynamically
optimal tree for any sufficiently-long access sequence [11]. In 2001, John Iacono
added the unified conjecture, combining and extending the working set and
dynamic finger properties [7]. In addition to all of these impressive features,
splay trees have the same bounds per operation in an amortized sense as any
other balanced binary search tree algorithm; search, insert and removal can all
be done in O(log n) time per operation.

Despite this, splay trees have turned out to be surprisingly impractical in
real-world applications. Each operation is required to perform a non-trivial
amount of work restructuring the tree in order to maintain all of the above

1

mailto:eapache@gmail.com


properties, and while this restructuring does not change the order of the running-
time, it does add a substantial constant factor. As such, splay trees have typ-
ically been outperformed by more traditional balanced tree algorithms even
when the access sequence exhibits patterns for which splay trees have beneficial
properties.

Because of this problem, a great deal of work has gone into improving splay
trees, looking for tweaks and variants that reduce the restructuring penalty while
trying to maintain all of the excellent properties of the original design. In this
paper we survey such results, which exhibit a surprising number of problems.
Many of the proposed variants sacrifice all of the properties that make splay
trees so attractive, and few of them achieve competitive running-times despite
this. There also appears to have been a fair amount of duplicated effort, with
several authors inventing and testing the same designs. Confusingly, empirical
results for identical designs are wildly inconsistent across multiple papers.

The remainder of this paper is structured as follows. In section 2 we intro-
duce and summarize the core concepts of the original splay tree. This serves
as the base data structure on which all the other variants are built. In sec-
tion 3 we explore the numerous deterministic variants of the base splay tree,
presenting these approaches by category, rather than chronologically or by pa-
per. While the resulting order jumps around a bit, we believe that categorizing
the approaches in this way reveals some essential patterns.

In section 4 we explore the randomized splay tree variants, which attempt to
reduce restructuring at the cost of giving only expected running-time bounds.
In section 5 we consider promising approaches from the previous sections, and
some of the problems that they faced. We use this analysis to synthesize several
interesting new splay tree variants. We conclude in section 6.

2 The Splay Tree

On the surface, the behaviour of the original splay tree as introduced by Sleator
and Tarjan is extremely simple, which no doubt contributes in part to its charm.
A splay tree is maintained as a typical binary search tree requiring no extra
information at each node; left and right child pointers (and optionally parent
pointers, though they can be avoided with a little work) are the only data
needed. Whenever a node is inserted, removed, or accessed by search, that
node is then splayed, itself a relatively straight-forward process.

The splay operation on some node, x, performs a series of tree rotations that
bring x to be the root of the tree. Following Sleator and Tarjan, these rota-
tions are typically presented in three cases named zig, zig-zag, and zig-zig

(leaving off the symmetric cases of zag-zig and zag-zag). Intuitively however,
splaying is only a subtle variant of the naive move-to-root approach. In the
naive approach, we rotate the parent node of x in the direction such that x
moves closer to the root, rotating right if x is a left child, and left if x is a right
child.

2



With that context, the three cases of the actual splay algorithm are as fol-
lows:

zig This case only occurs when x ends up as the immediate child of the root; if
d (the original depth of node x) is even then this case never occurs since
the other two cases both operate two levels at a time. In the zig case,
we perform a single rotation to make x the root, exactly as in the naive
version.

zig-zag This case occurs when x is a right child and x’s parent is a left child, or
symmetrically (in the zag-zig case) when x is a left child and x’s parent
is a right child. The naming should be intuitive: to traverse from x’s
grandparent to x we would have to first “zig” one way and then “zag”
the other. This case is also exactly the same as the naive version; we
perform a rotation at x’s parent, then at x’s new parent (previously x’s
grandparent) to move x up two levels in the tree.

zig-zig This case covers the remaining possibilities; it occurs when x is a left
child and x’s parent is also a left child, or symmetrically (the zag-zag

case) when x is a right child and x’s parent is also a right child. This
case is the only one which is not the same as the naive case, although
the difference is subtle. Instead of performing a rotation at x’s parent,
then at x’s new parent (its previous grandparent), we instead reverse that
order. The splay operation first performs the rotation at x’s grandparent,
moving both x and its parent up one level. It then performs the rotation
at x’s parent, moving x up the second level.

While the difference between splaying and the naive move-to-root imple-
mentation appears minor, it actually makes a significant difference. The naive
implementation has none of the excellent properties of the splay tree, and in
particular can cost up to O(n) per access, even in the amortized sense.

3 Deterministic Approaches

In this section we explore the numerous different deterministic approaches that
have been tried to reduce the work done by splay trees. We present these
attempts in three distinct categories. In 3.1 we deal with attempts to find
alternative, more efficient implementations of the original splay tree structure
that are more practically efficient (fewer pointer assignments per rotation, etc.)
without changing the algorithmic properties of the structure.

In 3.2 we look at the techniques which make use of traditional splay oper-
ations, but only splay nodes conditionally. That is to say, these variants do
not splay the node on every single insertion, deletion or access. Instead, some
algorithm or extra data is used to decide whether to splay the node in question,
or leave it in place. By reducing the number of splay operations these variants
naturally reduce the restructuring penalty. However, they frequently sacrifice
the splay tree’s good algorithmic properties in the process.

3



In 3.3 we look at a more ambitious set of techniques. These variants change
the splay operation in a fundamental way, sometimes by changing the order of
rotations or by only splaying certain nodes along the path. The results for these
variants are hit-and-miss. While some of them achieve good empirical improve-
ments and claim to maintain the good algorithmic properties that make splay
trees so attractive, others appear to be targeting different use cases entirely.

3.1 Splaying Implementations

Intuitively, the simplest method for reducing the work done by a splay tree is to
improve the implementation. If, for example, some technique can be found for
performing tree rotations with one fewer pointer change, then splaying can be
done more efficiently without any effect on its algorithmic properties. As many
of these special properties require complex proofs, it is highly advantageous to
avoid the need to reprove them.

Top-Down Splaying The most prominent such improved implementation is
called “top-down” splaying, and was introduced by Sleator and Tarjan in their
original 1985 paper [11]. The idea behind top-down splaying is relatively sim-
ple, although the implementation is somewhat less intuitive. While traditional
splaying works in a “bottom-up” manner, rotating the target node upwards in
the tree until it is at the root, you will note that we have already traversed the
path followed in order to find it in the first place. Top-down splaying effectively
combines these steps: the tree is splayed as it is traversed downwards, reducing
the total amount of work performed.

The implementation is less obvious however as, contrary to bottom-up splay-
ing, top-down splaying cannot be done properly with just rotations. Suppose
we are inserting, removing or accessing some element x. During traversal, the
tree is broken into three distinct parts. The left part contains all the elements
that are known to be less than x. The right tree, symmetrically, contains all the
elements that are known to be greater than x. The final, “middle” part consists
of the remaining elements which have as an ancestor the current node on the
access path. The algorithm starts at the root, meaning the left and right parts
are empty, and the middle part contains the entire tree.

During top-down splaying, we traverse the tree downwards, considering
nodes in pairs just as in bottom-up splaying. Subtrees that we do not traverse
(for example the right subtree of a node at which we turn left) are detached
from their parent and efficiently added to either the left or right part of the
tree. When the target node x is finally reached, the left and right parts are
made its left and right children, and its original children are added to those new
subtrees. As with bottom-up splaying, it is the zig-zig step that is slightly
different in top-down splaying. When travelling down such a path, a single
rotation is performed at that node before the normal splitting is done.

Sleator and Tarjan claim that their primary lemma (frequently known as the
“access lemma”) holds for top-down splaying with an unchanged constant factor

4



compared to bottom-up splaying, however that top-down splaying is typically
somewhat more efficient to implement.

Simple Splaying Sleator and Tarjan also consider the use of a method they
call “simple splaying”, which has an equivalent top-down variant. In simple
splaying, the second rotation (or, in the top-down variant, the second “link”)
of the zig-zag case is skipped. They claim that the same analysis holds as was
used for normal splaying, but with a slightly higher constant factor. As the
actual splay operations are marginally faster however, they suggest that either
method could prove empirically more efficient.

Empirical Comparisons In 1987, Erkki Mäkinen studied the properties of
top-down splaying and simple top-down splaying, performing several theoretical
and empirical measurements of their efficiency [10]. He also showed that while
bottom-up and top-down splaying have exactly the same theoretical properties,
they do result in slightly different trees under certain conditions. Based on a
precise analysis of the implementation cost in pointer-assignments of the two
primitives (rotation and link), Mäkinen suggested that top-down splaying has
an effective constant factor of only 2.79 compared to a value of 3 for bottom-
up splaying. Empirically, he compared top-down splaying and simple top-down
splaying, finding the normal (non-simple) variant to be somewhat faster under
most loads. Unfortunately, Mäkinen did not include a comparison with any
kind of bottom-up splaying. The only control group was something he termed
“Stephenson’s variant” which was simply a top-down version of the naive ap-
proach outlined in section 2.

In 1993, Bell and Gupta did a much more thorough empirical study of various
tree types. Although they did not implement the “simple” splay versions, they
did compare top-down and bottom-up splaying with AVL trees, random trees,
and other unrelated variants [2]. Their results indicated that, in general, splay
trees simply weren’t competitive. For balanced workloads, top-down splaying
took approximately twice the time of an AVL or random tree to perform the
same operations, and bottom-up splaying longer than that. Even for heavily
skewed workloads, where the splay tree’s extra properties should have made it
shine, top-down splaying took just as long as the AVL and random trees, and
bottom-up splaying was still worse.

However, these results did not go unchallenged. In 2001, Williams et al.
performed an empirical evaluation of splay trees, using red-black trees and hash
tables as benchmarks when working with large text collections [12].1 They found
that while neither top-down nor bottom-up splaying were competitive with a
red-black tree or hash table, the difference was only around 25% (as compared
with the factor of 2 or more found by Bell and Gupta). Adding to the mystery,
they found that top-down splaying was, in fact, 10% slower than bottom-up
splaying, not faster. Williams et al. suggested that this difference was due to

1Williams et al. also proposed and evaluated several new splay tree variants, but we will
present those later.

5



the small size of the test data used by Bell and Gupta, permitting it to fit
entirely in the CPU cache.

In 2005 Lee found, contrary to Mäkinen, that simple top-down splaying was
in fact faster than normal top-down splaying (cited in [9]; I was unable to find
the original paper). In 2009 Brinkmann et al. found, matching Bell and Gupta
but contrary to Williams et al., that top-down splaying was faster than bottom-
up splaying, but that the difference was small, less than 30% in all cases [3].
The only conclusion I can draw is that more thorough experiments are needed
to precisely control for the numerous variables that might affect the results.

3.2 Conditional Splaying

While different implementations of the core splaying concept can go some way
to reducing the amount of work performed by a splay tree, that approach is
fundamentally limited in that it must move every accessed node all the way
to the root, and must perform certain operations all the way along that path
in order to achieve the necessary guarantees. As such, a substantial amount
of work has also gone into methods to reduce the number of splay operations
performed.

In these conditional splaying variants, certain accesses are splayed and others
are not, depending on some heuristic or additional data. This has obvious and
substantial benefits – splaying half as much obviously spends only half as much
time on restructuring – but weakens or voids many of the nice properties that
have been shown to hold for proper splay trees.

Long Splaying As with the implementation-based improvements, Sleator and
Tarjan again lead the charge, suggesting two different heuristic conditions in
their 1985 paper [11]. The first of these, called “long splaying”, proposes splay-
ing a node only if its path is too long. This has an obvious intuitive appeal;
splaying a node shortens its path, so by applying this heuristic the resulting
tree should remain relatively balanced.

The question then becomes one of what constitutes “too long”. In their
paper, Sleater and Tarjan suggest that the path to a node x be considered too
long if it is longer than c′ log(W/w(x)) + c′/c, where c is the constant factor
from their Lemma 1 (the “access lemma”), c′ is some constant greater than c,
w(x) is the fixed node weight of x, and W is the sum of all node weights in the
tree.

In theorem 7 of their paper, Sleator and Tarjan prove that under this defini-
tion, the total splaying cost is independent of the number of accesses and pro-
portional to the amortized cost of accessing each element once. These properties
suggest that our intuition was correct; the tree is splayed until it is relatively
balanced, and further splaying does not occur.

Unfortunately, we are not aware of anyone who has bothered to implement
this method and compare it to other balanced trees such as red-black trees.
This variant also obviously lacks most of the splay tree’s other good properties
since it does not adapt to changes in usage patterns.

6



Snapshot Splaying Also from Sleator and Tarjan’s original paper is a method
which they refer to as “snapshot splaying” [11]. In this variant, splaying is per-
formed normally for the first j operations. For all subsequent operations, no
splaying occurs; the tree is treated as a static binary search tree. The intu-
ition here is that j splay operations is enough to put the tree in a relatively
good shape. This is also supported by the fact that, since splay tree bounds
are proved under amortization, we can somehow expect the average state of the
tree to be good.

While this variant, like long splaying, clearly lacks many of the nice proper-
ties of a full splay tree, Sleator and Tarjan still prove an interesting result on it
in theorem 8 of their paper (the “snapshot theorem”). Consider a sequence of
m accesses on any initial tree, where the snapshot value of j is chosen uniformly
from 1 . . .m. Then the resulting search tree has an expected access time related
to the entropy of the distribution: O((n log n)/m +

∑n
i=1 pi log(1/pi)).

Unlike long splaying, this variant has been tested empirically at least once,
as it was one of the types included in the 2001 study by Williams et al. [12].
Called the “stopsplay” heuristic in that paper, they found the results to be
inconsistent depending on j, but that it did not seem to offer any practical
improvement over normal splaying.

Periodic Splaying Another relatively straight-forward variant is one which
we will name “periodic splaying”. Unlike the others so far, periodic splaying has
been well-studied, appearing in several distinct empirical evaluations. In this
variant, some period k is chosen. Every kth operation is then splayed, while any
other operations are not. With k = 2 this then results in 1/2 the splay operations
of a traditional splay tree. The intuition is that the somewhat-reduced adaptive
balance is more than compensated by less time spent splaying.

This method has a peculiar history. It seems to have been first suggested in
passing by Bell and Gupta [2]. As it was not the focus of their paper however,
they did not name or analyze this method. In 2001, Williams et al. propose
this method and call it “periodic rotation” [12]. While they cite Bell and Gupta
elsewhere in their paper, they do not credit them with this heuristic. Instead,
they mention a similar randomized algorithm proposed by Fürer [6].

In 2007, Lee and Martel proposed this heuristic again and called it k-
splaying. While they do cite Williams et al. elsewhere, they instead credit
their version as a deterministic variant of the randomized algorithm invented
by Albers and Karpinski [1]. It is unclear which of these many proposals were
valid new inventions and which were not; regardless, original credit must go to
Bell and Gupta as their paper precedes the others by a significant margin.

In their empirical evaluation, Williams et al. found periodic rotation to be
relatively successful, providing an improvement of approximately 27 percent and
making splay trees effectively competitive with other balanced tree types. They
found a period of 11 to be roughly optimal for their workloads, though they
note that this could vary substantially. Lee and Martel found periodic rotation
to out-perform a random BST by 18%, and that the optimal value of k shrank

7



as the trees grew, down to the point where k = 4 was optimal for trees with
more than one million nodes.

As with many of the other variants, this one sacrifices most of the nice prop-
erties of splay trees. There are certain obvious access patterns where periodic
splaying results in O(n) amortized cost per operation, making it no better than
any unbalanced binary search tree. However, it does seem intuitive that peri-
odic splaying results in an expected behaviour close to that of splay trees, at
least for unpatterned access sequences.

Count Splaying Among the more complex conditional splaying variants is
one proposed by Williams et al. in 2001, which they call “count splaying” [12].
In this scheme, an access count is stored with each node, and incremented on
every access. When the count for a particular node reaches a certain threshold,
that node is splayed. They found this method to work particularly poorly as it
adapted too slowly to changes in access patterns.

Sliding Window Splaying In 2007, Lee and Martel proposed an interesting
variant based on a sliding window [9]. The depth of each of the last w accesses
are saved with the tree; if fewer than t of them have depth less than d, then the
next access is splayed. The intuition behind this method is that if most of the
accesses are near the root, then splaying simply produces unnecessary shuffling.
If, however, many accesses are deep in the tree, then splaying will be able to
pay for itself by improving the shape of the tree.

For their empirical study, Lee and Martel chose values of d = log2 n, w = 32
and t = 16. They found that while sliding-window splaying was a substantial
improvement over normal splaying, it performed only marginally better than
the much simpler periodic splaying.

3.3 Splaying Differently

While we have explored different implementations of splaying in 3.1 and var-
ious conditional variants in 3.2, all of those attempts make use of the same
fundamental splaying operation described in Sleator and Tarjan’s original pa-
per. However, there are a number of other variants which do not touch the
implementation or frequency of splaying. Instead, the splaying operation itself
is changed to require less work.

In some of these variants, only part of the path is splayed, depending on
certain conditions or additional data. In these cases, the splayed node moves
up, but doesn’t necessarily make it all the way to the root. In other variants,
the order or number of rotations made is changed in certain cases, with a variety
of interesting side-effects. While the different splaying implementations trivially
maintained all of the nice properties of splay trees, and the conditional variants
almost universally sacrificed those properties, the methods found here are a
mixed bag. Some of them have been shown to have all the same properties
of splay trees with a different constant factor, while others have no theoretical
results at all.

8



Semi-Splaying Once again, the first variant for this section comes from
Sleator and Tarjan’s original 1985 paper [11]. Called semi-splaying, this method
is identical to normal splaying in the zig and zig-zag case. However, the
zig-zig case involves one fewer rotation; the first rotation at the node’s grand-
parent occurs as normal, but the second rotation at the node’s parent does not.
Instead, the semi-splaying algorithm simply continues from the parent. The net
result is that semi-splaying performs fewer rotations than regular splaying, but
does not necessarily move the splayed node all the way to the root of the tree.
Instead, it ends up with depth at most half of where it was previously.

Sleator and Tarjan present interesting semi-splaying results in their paper.
They claim that their access lemma holds for semi-splaying with a constant
factor of 2 (compared to a constant factor of 3 for normal splaying). This is
sufficient to imply that semi-splaying has many if not all of the nice properties
of normal splay trees. They also give a top-down equivalent of semi-splaying to
go with the top-down implementation of normal splaying.

In the 2001 study by Williams et al. they do not present any specific results
related to semi-splaying, however they do state that “In all cases, we have found
that semi-splaying performs worse than all other variants described in this paper,
including RSTs” [12]. This seems counter-intuitive, though Brinkmann et al.
point out that, based on the admittedly vague description, the variant tested
by Williams et al. might not have been the same as the variant proposed by
Sleator and Tarjan [3].

Independent and Simple Semi-Splaying Brinkmann et al. also propose
their own pair of minor variants, called “simple semi-splaying” and “independent
semi-splaying” respectively. Simple semi-splaying appears to be a combination
of the simple splaying implementation from section 3.1 and the semi-splaying
algorithm described above.

They note that this combination can be understood entirely without rota-
tions. Instead, the current node, its parent and grandparent are restructured
into a complete binary tree of three nodes, then the algorithm repeats at the
root of this new tree. Independent semi-splaying is presented in a similar fash-
ion, except that it is performed top-down and nodes are never reused. The path
is split into strictly independent node triples, each of which is restructured to
be a complete binary tree. They note that while semi-splaying guarantees that
a node will end up at least half as deep as before, independent semi-splaying
guarantees only that it will end up two thirds as deep as before.

Empirically, Brinkmann et al. compared semi-splaying with both its simple
and independent variants, using normal top-down splaying as a comparison
point. They found that semi-splaying performs around 10% better than regular
top-down splaying, but that simple semi-splaying performs only about on par,
depending on how heavily weighted the access distribution was. Independent
semi-splaying, on the other hand, performed nearly 15% better than the normal
top-down version. Unfortunately, Brinkmann et al. do not benchmark any other
tree types for comparison.

9



Partial Splaying In 1992, Klostermeyer published a paper which proposed
several interesting variants in this category and did a simple empirical simulation
to test their performance [8]. One of these, the “partial splay tree”, shares an
approach with the conditional “count splaying” scheme proposed by Williams
et al. [12] and covered in section 3.2 of this paper.

In both versions, each node keeps a counter of the number of times it has been
the target of an access. In the version of Williams et al., a node is splayed fully
when the count exceeds a certain threshold. However in the version presented by
Klostermeyer each node is always splayed, but only until its parent has a greater
access count. This results in frequently-accessed nodes appearing near the root,
but not getting displaced when an infrequently accessed node is splayed.

Empirically, Klostermeyer compared partial splaying to traditional splaying
and to an AVL tree as a benchmark. They found that partial splaying did not
provide any advantage except in specific cases of static but non-uniform access
frequencies since, like the count splaying scheme of Williams et al., it adapted
poorly to changes in access frequency.

Partway Splaying Another variant presented by Klostermeyer was called
the “partway splay tree”. In this tree, a node is splayed partway to the root,
as in the partial splay tree, but the distance splayed is determined as a specific
fraction of the node’s existing depth. For example, an obvious choice would be
to have the tree always splays a node to one half its previous depth.

Empirically, Klostermeyer found that partway splaying performed almost
exactly on par with traditional splaying, offering no particular advantage.

Height-Balanced Splaying In the height-balanced splaying scheme also pre-
sented by Klostermeyer, a splay tree is in some sense combined with a classic
AVL tree such that splaying occurs, but only within the limits of keeping the
tree balanced. An AVL tree never permits a node’s left and right subtrees to
be out of balance by more than one, but Klostermeyer found this to be overly
restrictive. Instead, this was relaxed to some arbitrary “balance limit”.

In height-balanced splaying, the path from node to root is walked normally.
However, instead of splaying for every triple of nodes, the zig and zig-zag

splaying operations are performed only when they preserve the balance limit of
the tree. This provides some of the benefits of splaying, but ensures that the tree
remains at least somewhat balanced even in the worst case. Height-balanced
splaying was found to behave marginally better than traditional splaying, but
was still not competitive with AVL trees except under extremely biased work-
loads.

Reference-Balanced Trees The reference-balanced tree is sufficiently dif-
ferent that it is not, strictly speaking, a variant of the splay tree at all. It seems
to me better described as a variant of an AVL tree instead. However, it was
presented by Klostermeyer together with height-balanced splaying so we will
touch on it here.

10



In the reference-balanced tree, each node maintains balance between its left
and right subtrees just as in an AVL tree. However, instead of balancing based
on height as an in AVL tree, a reference-balanced tree balances (as the name
implies) on the number of accesses to each subtree, counted as in Klostermeyer’s
partial splaying scheme, or Williams et al.’s count splaying scheme.

The reference-balanced tree explicitly sacrifices many of the dynamic prop-
erties of splay trees in order to balance accesses across the tree. Klostermeyer
found it to perform best in practice of all the variants tested, though it still
wasn’t competitive with the AVL tree on evenly-distributed workloads.

4 Randomized Approaches

In the previous section we explored a substantial number of deterministic vari-
ants on the original splay tree of Sleator and Tarjan, however a number of
randomized variants have also been proposed. These variants use probabilis-
tic methods to achieve better expected running times, typically at the cost of
poorer worst-case performance.

Full Random Splaying The full random splaying scheme appears to have
been proposed independently by Albers and Karpinski (cited in [1] but I could
not find the original) and Fürer [6]. In this simple scheme, similar to the deter-
ministic periodic splaying scheme from section 3.2, each access is splayed only
with some probability.

Albers and Karpinski performed a simple empirical evaluation of this scheme,
finding that it was moderately effective for certain query distributions, but be-
haved poorly for ones that exhibited high locality of reference. They also note
that the simple deterministic version (periodic splaying) behaves just as well
but without the cost of generating the random numbers. It is worth noting that
the variant proposed by Fürer is technically full random semi-splaying.

Random Parent Splaying In order to maintain the performance of full ran-
dom splaying but without sacrificing the guaranteed amortized performance
provided by normal splaying, Fürer proposes two further algorithms [6]. The
first, which he referred to simply as “algorithm B”, I will refer to as random
parent splaying. In this variant, with probability one half, the parent of the
target node is (semi-)splayed instead of the node itself.

I do not particularly understand the intuition behind this scheme – Fürer’s
treatment of it is quite brief – though he does claim that it maintains the
amortized worst-case behaviour of normal splay trees while somehow providing
25% better expected performance.

Partial Random Splaying The third algorithm proposed by Fürer (which
he calls “algorithm C”) is in some sense a combination of full random splaying
and random parent splaying. In this algorithm, which I will call “partial random
splaying”, some constant k is chosen. When splaying an element, one edge pair

11



is chosen uniformly at random from the first k edge pairs along the path. Semi-
splaying is then performed at this edge pair and every kth edge pair along the
path from it; all other edges are unchanged.

Again, Fürer’s treatment is very brief, but he claims that this algorithm
maintains the amortized worst-case behaviour of normal splay trees while pro-
viding the same expected running-time as full random splaying, above. He
also notes that this method is amenable to conversion into a top-down method.
Unfortunately I have been unable to find any further evaluation (empirical or
theoretical) of this method.

5 New Work

So far we have sampled a substantial number of splay tree variants based on
several different fundamental approaches. In this section we consider some of
the advantages and shortcomings of the variants we have seen, and propose
several new variants that may perform better.

Improved Partway Splaying Klostermeyer proposed a variant called part-
way splaying where each node was only splayed a fixed fraction of the way to
the root [8]. He found that in practice this method performed no better than
regular splaying. Consider, however, the behaviour of such a tree; given a node
at depth d, it would take log d consecutive accesses to that node to bring it
to the root. It seems possible that a similar variant might perform better if
the distance splayed was not a function of d but instead a function of n, or a
function of the maximum depth of any node.

For example, consider a partway splay tree that splayed each node at most
log n steps. If the access pattern (and thus the tree) is relatively balanced then
this behaves almost exactly like a normal splay tree. But if the access pattern
is unbalanced, then infrequently accessed nodes are not brought all the way to
the root; frequently accessed nodes still dominate there. Of course this method
has its drawbacks; it may take n/ log n consecutive accesses to bring a distant
node all the way to the root.

Alternatively, consider a partway splay tree that splays each node at most
half the depth of the tree. This is sufficient to bring any node to the root in
no more than three consecutive accesses, but it has some of the apparently nice
properties of the previous suggestion.

Counted Age Splaying The counted splaying method proposed by Williams
et al. [12] and the partial splaying scheme suggested by Klostermeyer [8] were
both found to adapt poorly in changes in access patterns, as the counter for
each node tracked only frequency, not how recently those accesses had occurred.
What is needed here is a way for the access counts to gradually age out over
time, thus tracking both frequency and recency. Fortunately, the sliding window
variant from Lee and Martel does just that [9].

12



However, while Lee and Martel used one sliding window for the entire tree, it
seems quite feasible to maintain a window per-node instead. If each node stored
the “time” of the most recent accesses to that node (using a single tree-wide
access counter as a simple “timer”), then a node could be splayed on one of
several interesting conditions. For example, a node could be splayed only until
the sum of its previous few access times becomes less than its parent’s, similar to
the partial splaying scheme by Klostermeyer. Or, a node could be splayed only
when the average of its last few access times is close (to within some constant
value) to the current “time”, similar to the counted splaying method of Williams
et al.

This scheme could even work if only the age of the single most recent access
were stored with each node, thereby taking no more space than the simple
counted splaying scheme from Williams et al. All of these variants would have
some of the same nice properties as the ones which they mimic, but would adapt
much more quickly to changes in access patterns.

Freeze Splaying The “snapshot splaying” method proposed by Sleator and
Tarjan in their original paper has certain interesting properties, but over the
long run it lacks any semblance of adapting to access pattern changes; the tree
is entirely static once frozen [11]. The sliding window scheme proposed by Lee
and Martel is in some sense an answer to this. We expect that in practice the
tree will “freeze” for a while (no splaying) when the window contains many short
accesses then “thaw” (splaying) when the window contains many long accesses
[9].

The version by Lee and Martel was found in practice to be complex to imple-
ment, and to perform only marginally better in practice than the much simpler
periodic splaying. However, we can achieve this freeze/thaw effect without the
complications of a sliding window. The simplest way, of course, is to maintain
a counter: freeze for k accesses, then splay for k accesses, and repeat. We do
not expect this naive version to perform any better than periodic splaying in
practice.

There are other methods of deciding when to freeze and thaw, however.
Rather than maintaining a sliding window, we could maintain a single counter.
On each access, the depth of the accessed node is added to the counter, and
the entire value is reduced by 10% (or reduced by a fixed log n, or any number
of other techniques possible to “age” it). Splaying is performed if that value is
over some threshold (which itself may be a function of n).

It may also be effective to use different triggers for freezing and thawing. For
example, a thaw could be triggered by any access to a node over a certain depth
d, while a freeze could be triggered by any access to a node under a certain
depth d′ (where d′ < d). This would have the advantage of greatly reducing
churn near the top of the tree.

Combinations As many of the previously explored variants are in some sense
disjoint, there are also a large number of available combinations that have not

13



yet been explored. Most of the proposed deterministic variants could probably
be used to generate a randomized equivalent, though if the experience of Albers
and Karpinski is any guide these will not have any immediate performance
advantage over their deterministic cousins [1]. They would, however, have the
advantage of being resistant to attacks via crafted access sequences.

Another area for generating combinations lies in both splaying conditionally
(section 3.2) and splaying differently (section 3.3). Brinkmann et al. suggest
combining their semi-splaying variants with some of what they call “partial
techniques” as an interesting direction for future research [3]. For example,
periodic semi-splaying seems like it might show promise given the benefits shown
individually by its two parents.

6 Conclusion

As we have seen, there are a truly astonishing number of splay tree variants
proposed in the literature, and new ones that show some intuitive promise are
relatively easy to invent. This multiplicity is a testament to the power and
intriguing properties of the original splay tree, and to its poor practical perfor-
mance.

Unfortunately, the vast majority of the variants we found sacrificed every-
thing that makes the splay tree so nice in order to win this practical performance.
The exceptions to this rule are sparse: Sleator and Tarjan’s semi-splaying seems
to maintain most of the splay trees properties, as does independent semi-splaying
by Brinkmann et al. The different implementations from section 3.1 do of course,
but the room for further improvement in that area seems limited.

Another point of particular concern is the lack of consistent empirical results
reported by various authors. Despite efforts to control for common variables,
many of the results we found were not just different but in fact flatly contradicted
each other. Clearly further study is needed, in particular to nail down the effects
of various parameters on behaviour.

Several such problematic parameters include key type and tree size. While
some studies were done with integers (which are fast to compare), others were
done with strings (which are not). If one variant increases the number of re-
quired comparisons while decreasing other work done, it might perform better
than usual on integer keys, but worse than usual on string keys. Also relevant
is the size of the tree compared to the size of the cache (a variable addressed
only by Lee and Martel [9]). If the entire tree fits into the processor’s cache,
certain operations may have different effective costs than if the algorithm must
frequently go to main memory.

Any survey of this type is bound to be incomplete, especially given the
breadth of literature on the topic. There are several papers cited here for which
we were unable to find or access an original copy; we have had to make do
with what is reported in abstracts and quoted in papers we do have access to.
However, we hope this provides an effective and useful jumping-in point for
future work in this area.

14



References

[1] Susanne Albers and Marek Karpinski. Randomized splay trees: Theoretical
and experimental results. Information Processing Letters, 81(4):213 – 221,
2002.

[2] Jim Bell and Gopal Gupta. An evaluation of self-adjusting binary search
tree techniques. Software Practice and Experience, 23:369–382, 1993.

[3] Gunnar Brinkmann, Jan Degraer, and Karel De Loof. Rehabilitation of an
unloved child: semi-splaying. Software: Practice and Experience, 39(1):33–
45, 2009.

[4] R. Cole. On the dynamic finger conjecture for splay trees. part ii: The
proof. SIAM Journal on Computing, 30(1):44–85, 2000.

[5] R. Cole, B. Mishra, J. Schmidt, and A. Siegel. On the dynamic finger
conjecture for splay trees. part i: Splay sorting log n-block sequences. SIAM
Journal on Computing, 30(1):1–43, 2000.

[6] Martin Fürer. Randomized splay trees. In Proceedings of the Tenth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA ’99, pages
903–904, Philadelphia, PA, USA, 1999. Society for Industrial and Applied
Mathematics.

[7] John Iacono. Alternatives to splay trees with o(log n) worst-case access
times. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’01, pages 516–522, Philadelphia, PA, USA,
2001. Society for Industrial and Applied Mathematics.

[8] William F. Klostermeyer. Optimizing searching with self-adjusting trees.
Journal of Information and Optimization Sciences, 13(1):85–95, 1992.

[9] Eric K. Lee and Charles U. Martel. When to use splay trees. Software:
Practice and Experience, 37(15):1559–1575, 2007.

[10] Erkki Mäkinen. On top-down splaying. BIT Numerical Mathematics,
27(3):330–339, 1987.

[11] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary
search trees. J. ACM, 32(3):652–686, July 1985.

[12] Hugh E. Williams, Justin Zobel, and Steffen Heinz. Self-adjusting trees
in practice for large text collections. Software: Practice and Experience,
31(10):925–939, 2001.

15


	Introduction
	The Splay Tree
	Deterministic Approaches
	Splaying Implementations
	Conditional Splaying
	Splaying Differently

	Randomized Approaches
	New Work
	Conclusion

